• 中国科学引文数据库(CSCD)
  • 中文科技期刊数据库
  • 中国核心期刊(遴选)数据库
  • 日本科学技术振兴机构数据库(JST)
  • 中国学术期刊(网络版)(CNKI)
  • 中国学术期刊综合评价数据库(CAJCED)
  • 中国超星期刊域出版平台
GNSS World of China

GNSS World of China

FAN Jiuguo, LI Jianyong. Application research of RINGO software in multi-system GNSS data preprocessing[J]. GNSS World of China. DOI: 10.12265/j.gnss.2023202
Citation: FAN Jiuguo, LI Jianyong. Application research of RINGO software in multi-system GNSS data preprocessing[J]. GNSS World of China. DOI: 10.12265/j.gnss.2023202

Application research of RINGO software in multi-system GNSS data preprocessing

More Information
  • Received Date: October 26, 2023
  • Available Online: April 24, 2024
  • Data preprocessing is a prerequisite for achieving high-precision positioning with the Global Navigation Satellite System (GNSS) and is also a vital step in data processing. As the number of satellite systems, numbers, and versions of Receiver Independent EXchange format (RINEX) increase, the GNSS data types and formats become progressively complex. Thought there are various data preprocessing software options available, multiple programs are required to complete the preprocessing stage, resulting in inefficiency and complexity. Therefore, to achieve efficient data preprocessing, developers have created the “RINGO” data preprocessing software, which supports all RINEX versions of multi-system data preprocessing. To achieve effective data preprocessing, developers created the “RINGO” software which supports all RINEX versions of multi-system data preprocessing. The study demonstrates the main functions, usage and principles of RINGO, with a focus on investigating and explaining confusing functions such as receiver clock jump correction. The test results demonstrate that RINGO can effectively and independently preprocess vast amounts of multi-system GNSS data, which can significantly ease the complex task of GNSS data management and foster the adoption of the latest version of RINEX observation records.
  • [1]
    BLEWITT G, HAMMOND W, KREEMER C. Harnessing the GPS data explosion for interdisciplinary science [J]. Eos, 2018:99. DOI: 10.1029/2018EO104623
    [2]
    GURTNER W, ESTEY L. RINEX: The Receiver Independent Exchange Format Version 3.00[R/OL]. (2007-11-28)[2023-07-20]. https://files.igs.org/pub/data/format/rinex300.pd
    [3]
    ESTEY L H, MEERTENS C M. TEQC: the multi-purpose toolkit for GPS/GLONASS data[J]. GPS solutions, 1999, 3(1): 42-49. DOI: 10.1007/PL00012778
    [4]
    FREYMUELLER J. IGSMAIL-4318: new version of Clockprep program [J]. IGS central bureau, 2003: 20.
    [5]
    VACLAVOVIC P, DOUSA J. G-Nut/Anubis: open-source tool for multi-GNSS data monitoring with a multipath detection for new signals, frequencies and constellations[J]. IAG 150 years, 2015(143): 775-782. DOI: 10.1007/1345.2015.97
    [6]
    NISCHAN T. GFZRNX-RINEX GNSS data conversion and manipulation toolbox (version 1.05) [J]. GFI data services, 2016. DOI: 10.5880/GFZ.11.2016.002
    [7]
    KAWAMOTO S, TAKAMATSU N, ABE S. RINGO: A RINEX pre-processing software for multi-GNSS data[J]. Earth, planets and space, 2023(75): 54. DOI: 10.1186/S40623-023-01811-w
    [8]
    HATANAKA Y. A compression format and tools for GNSS observation data[J]. Bulletin of the Geographical Survey Institute, 2008, 55: 21-30. https://www.gsi.go.jp/common1000045517.pdf
    [9]
    赵珞成. GPS 接收机时钟控制方法[J]. 测绘科学, 2006, 31(1): 94-95. DOI: 10.3771/j.issn.1009-2307.2006.01.032
    [10]
    GUO F, ZHANG X. Real-time clock jump compensation for precise point positioning[J]. GPS solutions, 2014, 18(1): 41-50. DOI: 10.1007/s10291-012-0307-3
    [11]
    WÜBBENA G. Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements[C]// Proceedings of the First International Symposium on Precise Positioning with GPS, 1985: 403-412.
    [12]
    BLEWITT G. An automatic editing algorithm for GPS data[J]. Geophysical research letters, 1990, 17(3): 199-202. DOI: 10.1029/GL017i003p00199
    [13]
    张小红, 曾琪, 何俊, 等. 构建阈值模型改善TurboEdit实时周跳探测[J]. 武汉大学学报(信息科学版), 2017, 42(3): 285-292.
    [14]
    FRITSCHE M, DIETRICH R, KNöFEL C, et al. Impact of higher-order ionospheric terms on GPS estimates[J]. Geophysical research letters, 2005, 32(23): 23311-1-23311-5. DOI: 10.1029/2005GL024342
    [15]
    KEDAR S, HAJJ G A, WILSON B, et al. The effect of the second order GPS ionospheric correction on receiver positions [J]. Geophysical research letters, 2003, 30(16). DOI: 10.1029/2003GL017639
    [16]
    MUNEKANE H. A semi-analytical estimation of the effect of second-order ionospheric correction on the GPS positioning[J]. Geophysical journal international, 2005, 163(1): 10-17. DOI: 10.1111/j.1365-246X.2005.02723.x
    [17]
    HAJJ G A , BASSIRI S. Higher-order ionospheric effects on the GPS observables and means of modeling them [J]. Advances in the Astronautical Sciences, 1993, 95: 1071-1086.
    [18]
    ALKEN P, ERWAN T, BEGGAN C D, et al. International geomagnetic reference field: the thirteenth generation[J]. Earth planets and space, 2021, 73(1): 1-25. DOI: 10.1186/s40623-020-01288-x
    [19]
    SCHAER S, BEUTLER G, ROTHACHER M. Mapping and predicting the ionosphere[C]// The 1998 IGS Analysis Center Workshop, 1998.
    [20]
    MARQUES H A, MONICO J F, AQUINO M. RINEX_HO: second-and third-order ionospheric corrections for RINEX observation files[J]. GPS solutions, 2011, 15(3): 305-314. DOI: 10.1007/s10291-011-0220-1
  • Related Articles

    [1]WEI Haihe, LI Kezhao, MA Weihua, SUN Chong, YUE Zhe. Optimizing RAIM algorithm of GNSS receiver based on UKF[J]. GNSS World of China, 2025, 50(3): 61-66, 95. DOI: 10.12265/j.gnss.2024213
    [2]HU Weijian, LU Liguo, WU Tangting, LIANG Qiao. Design and implementation of multi-frequency and multi-GNSS data preprocessing software[J]. GNSS World of China, 2024, 49(3): 115-122. DOI: 10.12265/j.gnss.2024011
    [3]TIAN Xiaojing, QIN Shimin, WANG Jianwen, LI Xiuming. Effect of phase center correction models of different receivers on GPS/BDS precision positioning[J]. GNSS World of China, 2024, 49(2): 54-60. DOI: 10.12265/j.gnss.2022223
    [4]TENG Yuehao, JIA Xiaolin, LEI Panrong, ZHOU Ping, CAO Chuang. iGMAS multi-brand monitoring receiver data quality analysis[J]. GNSS World of China, 2022, 47(1): 59-67. DOI: 10.12265/j.gnss.2021083104
    [5]ZHAO Chuanbao, SHENG Chuanzhen, ZHANG Baocheng. Precise point positioning time transfer based on receiver clock offsets constraint[J]. GNSS World of China, 2021, 46(2): 13-17. DOI: 10.12265/j.gnss.2020120901
    [6]E Shenglong, ZHOU Gang, TAN Liqing, LUO Yingting, XU Hailin. Analysis on GNSS receive performance and observation data quality in substation environment[J]. GNSS World of China, 2020, 45(4): 36-41. DOI: 10.13442/j.gnss.1008-9268.2020.04.006
    [7]AN Panpan, XIAO Zhibin, TANG Xiaomei, SUN Guangfu.   The Effect of Ionospheric Scintillation on Receiver[J]. GNSS World of China, 2017, 42(4): 47-53. DOI: 10.13442/j.gnss.1008-9268.2017.04.009
    [8]WANG Lizhi.  Design of Monitoring Software for GNSS Ionospheric TEC and Scintillation Receiver[J]. GNSS World of China, 2017, 42(2): 55-58. DOI: 10.13442/j.gnss.1008-9268.2017.02.012
    [9]WANG Fulin, YU Guangrui, WANG Long. Analysis of Data Pre-processing and Quality Checking Based on TEQC[J]. GNSS World of China, 2017, 42(1): 118-121+126. DOI: 10.13442/j.gnss.1008-9268.2017.01.025
    [10]CAO Xiaoliang, GUO Chengjun.  Design and Implementation of GNSS Receiver Test System Base on Software Defined Radio[J]. GNSS World of China, 2017, 42(1): 49-52+64. DOI: 1008-9268(2017)01-0049-05

Catalog

    Article Metrics

    Article views (566) PDF downloads (178) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return