GNSS World of China
Citation: | ZHOU Wei, HUANG Liangke, ZHAO Xingwang, LI Wenkui. Android smartphone-based GNSS multipath reflectometry for estimating the reflector height[J]. GNSS World of China, 2025, 50(2): 14-21, 37. DOI: 10.12265/j.gnss.2025002 |
With the rapid popularization of mobile smart devices, developing applications of Global Navigation Satellite System Multipath Reflectometry (GNSS-MR) techniques using low-cost GNSS antennas has become both possible and significant. Aiming to address the high hardware requirements of the classical GNSS-MR method and the susceptibility of low-cost GNSS observations to noise interference, we propose a high-precision ground-based GNSS-MR altimetry algorithm for Android smartphones. Firstly, raw signal-to-noise ratio (SNR) data from multiple GNSS is collected using two smartphones: the iQOO Neo 3 (IN3) and Xiaomi 8. After processing the data with a multi-scale wavelet decomposition algorithm, a nonlinear least squares method is employed to extract the oscillation frequency of the high-frequency coefficients via waveform fitting, retrieving the reflector heights between the land surface and the antenna phase center. Finally, the performance of the proposed method is validated by comparing the reflector heights obtained with in situ measurements and those from geodetic GNSS receivers. The results demonstrate that noise signals negatively impact altimetry using Android smartphone-based GNSS-MR. The root mean square error (RMSE) of GNSS-MR altimetry for both GPS and BDS satellites are less than 10 cm, and the stability is significantly better than that of other single-system estimations. Compared to geodetic GNSS receivers, smartphones benefit from longer SNR arcs. The proposed method provides a foundational theory for developing low-cost ground-based and low-altitude airborne GNSS-MR monitoring equipment.
[1] |
曾树林, 匡翠林. 智能手机RTK定位软件实现及应用试验[J]. 全球定位系统, 2022, 47(5): 72-80. DOI: 10.12265/j.gnss.2022054
|
[2] |
郭斐, 吴维旺, 张小红, 等. Android智能手机实时精密单点定位软件实现及精度分析[J]. 武汉大学学报(信息科学版), 2021, 46(7): 1053-1062.
|
[3] |
LARSON K M, GUTMANN E D, ZAVOROTNY V U, et al. Can we measure snow depth with GPS receivers?[J]. Geophysical research letters, 2009, 36(17): L17502. DOI: 10.1029/2009GL039430
|
[4] |
张双成, 南阳, 李振宇, 等. GNSS-MR技术用于潮位变化监测分析[J]. 测绘学报, 2016, 45(9): 1042-1049. DOI: 10.11947/j.AGCS.2016.20150498
|
[5] |
边少锋, 周威, 刘立龙, 等. 小波变换与滑动窗口相结合的GNSS-IR雪深估测模型[J]. 测绘学报, 2020, 49(9): 1179-1188. DOI: 10.11947/j.AGCS.2020.20200268
|
[6] |
ROVER S, VITTI A. GNSS-R with low-cost receivers for retrieval of antenna height from snow surfaces using single-frequency observations[J]. Sensors, 2019, 19(24): 5536. DOI: 10.3390/s19245536
|
[7] |
LI Y W, YU K G, JIN T Y, et al. Development of a GNSS-IR instrument based on low-cost positioning chips and its performance evaluation for estimating the reflector height[J]. GPS solutions, 2021, 25(4): 127. DOI: 10.1007/s10291-021-01163-6
|
[8] |
STRANDBERG J, HAAS R. Can we measure sea level with a tablet computer?[J]. IEEE geoscience and remote sensing letters, 2020, 17(11): 1876-1878. DOI: 10.1109/LGRS.2019.2957545
|
[9] |
ALTUNTAS C, TUNALIOGLU N. Feasibility of retrieving effective reflector height using GNSS-IR from a single-frequency android smartphone SNR data[J]. Digital signal processing, 2021, 112: 103011. DOI: 10.1016/j.dsp.2021.103011
|
[10] |
NIEVINSKI F G, LARSON K M. Forward modeling of GPS multipath for near-surface reflectometry and positioning applications[J]. GPS solutions, 2013, 18(2): 309-322. DOI: 10.1007/s10291-013-0331-y
|
[11] |
金双根, 张勤耘, 钱晓东. 全球导航卫星系统反射测量(GNSS+R)最新进展与应用前景[J]. 测绘学报, 2017, 46(10): 1389-1398. DOI: 10.11947/j.AGCS.2017.20170282
|
[12] |
邓攀, 王泽民, 安家春, 等. 利用小波分解的GNSS-R雪厚反演改进算法[J]. 武汉大学学报(信息科学版), 2021, 46(6): 863-870.
|
[13] |
WANG X L, ZHANG Q, ZHANG S C. Water levels measured with SNR using wavelet decomposition and Lomb–Scargle periodogram[J]. GPS solutions, 2018, 22(1): 22. DOI: 10.1007/s10291-017-0684-8
|
[14] |
李惟, 朱云龙, 王峰, 等. GNSS多径信号模型及测高方法[J]. 北京航空航天大学学报, 2018, 44(6): 1239-1245.
|
[15] |
符平贵, 匡翠林, 楚彬. 北斗全频段GNSS-R水位反演研究[J]. 全球定位系统, 2023, 48(3): 52-56,92. DOI: 10.12265/j.gnss.2023083
|
[16] |
STRANDBERG J, HOBIGER T, HAAS R. Improving GNSS-R sea level determination through inverse modeling of SNR data[J]. Radio science, 2016, 51(8): 1286-1296. DOI: 10.1002/2016RS006057
|
[17] |
王洁, 王娜子, 徐天河, 等. 组合GNSS观测值反演海面高度[J]. 测绘学报, 2022, 51(2): 201-211. DOI: 10.11947/j.AGCS.2022.20200367
|