GNSS World of China

Volume 49 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
HAN Xihao, ZHENG Shuaiyong, YANG Jianlei, JIN Xiaowei, GAO Mengzhi, HUANG Zhigang, LI Kun, YANG Peng. Status and development of the ionospheric error correction techniques in satellite navigation[J]. GNSS World of China, 2024, 49(2): 111-126. doi: 10.12265/j.gnss.2023105
Citation: HAN Xihao, ZHENG Shuaiyong, YANG Jianlei, JIN Xiaowei, GAO Mengzhi, HUANG Zhigang, LI Kun, YANG Peng. Status and development of the ionospheric error correction techniques in satellite navigation[J]. GNSS World of China, 2024, 49(2): 111-126. doi: 10.12265/j.gnss.2023105

Status and development of the ionospheric error correction techniques in satellite navigation

doi: 10.12265/j.gnss.2023105
  • Received Date: 2023-05-10
    Available Online: 2024-03-26
  • Ionospheric error seriously affects the positioning accuracy of the global navigation satellite system. GPS, BDS, Galileo and GLONASS all adopt different ionospheric error correction methods. The ionospheric error correction methods in satellite navigation are introduced, and the principle and development of single frequency ionospheric error correction, dual-frequency ionospheric error correction and multi-frequency ionospheric error correction are summarized in this paper. In the single frequency correction, the ionospheric error correction techniques in enhanced systems, BDGIM model, Klobuchar model, optimization of single frequency ionospheric error correction technology-IRI constraint model and NeQuick-G model are summarized; In the dual-frequency correction, the ionosphere-free model and the ionospheric error correction methods in the PPP-RTK technology are summarized; In the multi-frequency correction, the optimization and improvement of ionospheric error correction technique with the high order correction and geomagnetic field model are summarized. Finally, the ionospheric error correction techniques and their derivative are analyzed and encapsulated, the development trend and future hotspots of ionospheric error correction technology in satellite navigation are listed and analyzed.

     

  • loading
  • [1]
    SAĞIR S, ATICI R, AKALIN A, et al. The assessment in terms of QBO of NeQuick 2 model[J]. Egyptian journal of remote sensing and space sciences, 2019, 22(1): 67-72. DOI: 10.1016/J.EJRS.2018.07.004
    [2]
    王宁波, 袁运斌, 李子申, 等. 不同NeQuick电离层模型参数的应用精度分析[J]. 测绘学报, 2017, 46(4): 421-429.
    [3]
    谢钢. GPS原理与接收机设计[M]. 北京: 电子工业出版社, 2009: 80-85.
    [4]
    SUN M F, LIU L, YAN W, et al. Performance analysis of BDS B1C/B2a PPP using different models and MGEX products[J]. Survey review, 2022, 55(89): 192-203. DOI: 10.1080/00396265.2022.2081013
    [5]
    袁运斌, 李敏, 霍星亮, 等. 北斗三号全球卫星导航系统全球广播电离层延迟修正模型(BDGIM)应用性能评估[J]. 测绘学报, 2021, 50(4): 436-447.
    [6]
    CHEN L, LI M, HU Z G, et al. Method for real-time self-calibrating GLONASS code inter-frequency bias and improvements on single point positioning[J]. GPS solutions, 2018, 22(4): 1-12. DOI: 10.1007/s10291-018-0774-2
    [7]
    PAN L, ZHANG X H, GUO F. Characterizing inter-frequency bias and signal quality for GLONASS satellites with triple-frequency transmissions[J]. Advances in space research, 2019, 64(7): 1398-1414. DOI: 10.1016/j.asr.2019.06.038
    [8]
    CAO X Y, LI J C, ZHANG S J, et al. Uncombined precise point positioning with triple-frequency GNSS singles[J]. Advance in space research, 2019, 63(9): 2745-2756. DOI: 10.1016/J.ASR.2018.03.030
    [9]
    陈少鑫. GPS三频电离层误差改正算法研究[D]. 淮南: 安徽理工大学, 2019.
    [10]
    金蕾, 匡翠林. 基于地磁场建模的电离层误差二阶项改正方法[J]. 大地测量与地球动力学, 2012, 32(6): 119-122.
    [11]
    张鹏. 全球格网电离层模型在单频精密单点定位中的应用研究[D]. 长春: 吉林大学, 2021.
    [12]
    张卓轩. 复杂电离层环境下的GLS机载接收机性能评估技术研究[D]. 天津: 中国民航大学, 2022.
    [13]
    于耕, 曲歌. 北斗格网电离层模型格网点计算方法研究[J]. 电子技术应用, 2017, 43(6): 15-18.
    [14]
    ROVIR-GARCIA A, JUAN J M, SANZ J, et al. Accuracy of ionospheric models used in GNSS and SBAS: methodology and analysis[J]. Journal of geodesy, 2016, 90(3): 229-240. DOI: 10.1007/s00190-015-0868-3
    [15]
    LOPEZ-MARTINEZ M, ALVAREZ J M, LORENZO J M, et al. SBAS/EGNOS for maritime[J]. Journal of marine science and engineering. 2020, 8(10): 764. DOI: 10.3390/JMSE8100764
    [16]
    刘钝, 李锐. 卫星导航增强中的电离层扰动影响研究——基于系统可靠性工程的视角[J]. 全球定位系统, 2023, 48(1): 3-13.
    [17]
    BANVILLE S, HASSEN E, WALKER M, et al. Wide-area grid-based slant ionospheric delay corrections for precise point positioning[J]. Remote sensing, 2022(14): 1073. DOI: 10.3390/rs14051073
    [18]
    朱永兴, 谭述森, 杜兰, 等. 顾及粗差影响的全球电离层克里金插值及精度分析[J]. 测绘学报, 2019, 48(7): 840-848.
    [19]
    朱永兴, 谭述森, 任夏, 等. GNSS全球广播电离层模型精度分析[J]. 武汉大学学报(信息科学版), 2020, 45(5): 768-775.
    [20]
    黄玲, 章红平, 徐培亮, 等. 中国区域VTEC模型Kriging算法研究[J]. 武汉大学学报(信息科学版), 2016, 41(6): 729-737.
    [21]
    汤俊, 高鑫, 李垠健, 等. 2018年8月磁暴期间北斗GEO卫星电离层TEC时空变化分析[J]. 测绘学报, 2022, 51(3): 317-326.
    [22]
    田睿, 董绪荣. 小波分解与Prophet框架融合的电离层VTEC预报模型[J]. 系统工程与电子技术, 2021, 43(3): 610-622.
    [23]
    WANG S, WANG D, SUN J R. Artificial neural network-based ionospheric delay correction method for satellite-based augmentation systems[J]. Remote sensing, 2022(14): 676. DOI: 10.3390/rs14030676
    [24]
    YASYUKEVICH Y V, ZATOLOKIN D, PADOKHIN A, et al. Klobuchar, NeQuick G, BDGIM, GLONASS, IRI-2016, IRI-2012, IRI-Plas, NeQuick2, and GEMTEC ionospheric models: a comparison in total electron content and positioning domains[J]. Sensors, 2023, 23(10): 1424-8220. DOI: 10.3390/s23104773
    [25]
    CHEN J P, HU X G, TANG C P, et al. SIS accuracy and service performance of the BDS-3 basic system[J]. Science China physics, mechanics and astronomy, 2020, 63(6): 269511. DOI: 10.1007/s11433-019-1468-9
    [26]
    郭睿, 黄张裕, 孙瑞, 等. 北斗三号BDGIM模型的适用性分析[J]. 海洋测绘, 2021, 41(4): 61-63.
    [27]
    YUAN Y B, WANG N B, LI Z S, et al. The BeiDou global broadcast ionospheric delay correction model (BDGIM) and its preliminary performance evaluation results[J]. Navigation, 2019, 66(1): 1-15. DOI: 10.1002/NAVI.292
    [28]
    CHENG L, GAO W G, BO S, et al. Development of BeiDou satellite-based augmentation system[J]. Navigation-journal of the institute of navigation, 2021, 68(2): 405-417. DOI: 10.1002/NAVI.422
    [29]
    WANG N B, LI Z S, YUAN Y B, et al. BeiDou Global Ionospheric delay correction model(BDGIM): performance analysis during different levels of solar conditions[J]. GPS solutions, 2021, 25(3): 1-13. DOI: 10.1007/s10291-021-01125-y
    [30]
    XI K W, WANG X Y. Higher order ionospheric error correction in BDS precise orbit determination[J]. Advances in space research, 2021, 67(12): 4054-4065. DOI: 10.1016/J.ASR.2021.02.002
    [31]
    朱永兴. 北斗系统全球电离层建模理论与方法研究[J]. 测绘学报, 2021, 50(5): 710.
    [32]
    SU K, JIN S G, JIANG J, et al. Ionospheric VTEC and satellite DCB estimated from single-frequency BDS observations with multi-layer mapping function[J]. GPS solutions, 2021, 25(2): 1-17. DOI: 10.1007/s10291-021-01102-5
    [33]
    ZHANG R, SONG W W, YAO Y B, et al. Modeling regional ionospheric delay with ground-based BeiDou and GPS observations in China[J]. GPS solutions, 2015, 19(4): 649-658. DOI: 10.1007/s10291-014-0419-z
    [34]
    YANG C, GUO J, GENG T, et al. Assessment and comparison of broadcast ionospheric models: NTCM-BC, BDGIM, and Klobuchar[J]. Remote sensing, 2020, 12(7): 1215. DOI: 10.3390/rs12071215
    [35]
    WU X L, HU X G, WANG G, et al. Evaluation of COMPASS ionospheric model in GNSS positioning[J]. Advances in space research, 2013(51): 959-968. DOI: 10.1016/J.ASR.2012.09.039
    [36]
    谢杰, 姚志成, 刘鑫昌, 等. 双频GPS信号仿真的电离层误差补偿模型研究[J]. 微计算机信息, 2012, 28(5): 133-135.
    [37]
    WANG X L, LI Y F. Study on adaptability of GPS ionospheric error correction models[J]. Aircraft engineering and aerospace technology:an international journal, 2009, 81(4): 316-322. DOI: 10.1108/00022660910967309
    [38]
    刘宸, 刘长建, 冯绪, 等. 适用于不同尺度区域的Klobuchar-like电离层模型[J]. 测绘学报, 2016, 45(S2): 54-63.
    [39]
    ZHANG Q, LIU Z Y, HU Z G, et al. A modified BDS Klobuchar model considering hourly estimated night-time delays[J]. GPS solutions, 2022, 26(2): 1-13. DOI: 10.1007/s10291-022-01236-0
    [40]
    WANG N B, LI Z S, YUAN Y B, et al. Ionospheric correction using GPS Klobuchar coefficients with an empirical night-time delay model[J]. Advance in space research, 2019, 63(2): 886-896. DOI: 10.1016/J.ASR.2018.10.006
    [41]
    杨玲, 周春元, 苏小宁, 等. 附加IRI模型约束的全球电离层建模及定位精度分析[J]. 同济大学学报(自然科学版), 2021, 49(11): 1606-1613.
    [42]
    ZHU W, CHEN J Y, ZHANG Q, et al. Mapping of high-spatial-resolution three-dimensional electron density by combing of full-polarimetric SAR and IRI model[J]. Frontiers in earth science, 2020(8): 181. DOI: 10.3389/feart.2020.00181
    [43]
    MONTENBRUCK O, RODRIGUEZ B G. NeQuick-G performance assessment for space applications[J]. GPS solutions, 2019, 24(1): 1-12. DOI: 10.1007/s10291-019-0931-2
    [44]
    KIM J, KIM M. NeQuick G model based scale factor determination for using SBAS ionosphere corrections at low earth orbit[J]. Advanced in space research, 2020, 65(5): 1414-1423. DOI: 10.1016/j.asr.2019.11.038
    [45]
    ARAGON A, ZURN M, ROVIRA-GARCIA A. Galileo ionospheric correction algorithm: an optimization study of NeQuick-G[J]. Radio science, 2020, 54(11): 1156-1169. DOI: 10.1029/2019RS006875
    [46]
    TIAN Y, LI S H, SHEN H, et al. Comparative analysis of BDGIM, NeQuick-G, and Klobuchar ionospheric broadcast models[J]. Astrophysics and space science, 2022, 367(8): 78. DOI: 10.1007/s10509-022-04109-7
    [47]
    CIEĆKO A, GRUNWALD G. Klobuchar, NeQuick G, and EGNOS ionospheric models for GPS/EGNOS single-frequency positioning under 6-12 september 2017 space weather events[J]. Applied sciences-basel, 2020, 10(5): 78. DOI: 10.3390/app10051553
    [48]
    吴显兵, 阮仁桂. 伽利略电离层改正模型的精度对比分析[J]. 测绘科学, 2015, 40(5): 17-20.
    [49]
    韩玲, 王解先, 柳景斌. NeQuick模型算法研究及性能比较[J]. 武汉大学学报(信息科学版), 2018, 43(3): 464-470.
    [50]
    WANG C, ZHANG T, FAN L, et al. A simplified worldwide ionospheric model for satellite navigation[J]. IEEE transactions on aerospace and electronic systems, 2022, 58(1): 391-405. DOI: 10.1109/taes.2021.3103259
    [51]
    韩玲, 王解先, 陈艳玲, 等. 利用GNSS数据结合NeQuick模型优化磁暴期F2层临界频率参数估计[J]. 测绘学报, 2020, 49(1): 14-23.
    [52]
    CIRO G, ANTONIO A, SALVATORE G. Neustrelitz total electronic content model for galileo performance: a position domain analysis[J]. Sensors, 2022, 26(3): 3766. DOI: 10.3390/s23073766
    [53]
    肖勇. 高纬度区域GNSS多系统电离层建模及其精度评估[J]. 全球定位系统, 2023, 48(3): 33-38.
    [54]
    KIM B C, TININ M V. Potentialities of multi-frequency ionospheric correction in Global Navigation Satellite Systems[J]. Journal of geodesy, 2011, 85(3): 159-169. DOI: 10.1007/S00190-010-0425-Z
    [55]
    陈正生, 张清华, 李林阳, 等. 电离层延迟变化自模型化的载波相位平滑伪距算法[J]. 测绘学报, 2019, 48(9): 1107-1118.
    [56]
    BOLLA P, WON J H. Performance analysis of geometry-free and ionosphere-free code-carrier phase observation models in integer ambiguity resolution[J]. IET radar and navigation, 2018, 12(11): 1313-1319. DOI: 10.1049/IET-RSN.2018.5036
    [57]
    李宏宇. 多模多频非差非组合精密单点定位方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2021.
    [58]
    高爽. BDS/GNSS多参考站多模多频高精度定位技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
    [59]
    GAO W, GAO C, PAN S. A method of GPS/BDS/GLONASS combined RTK positioning for middle-long baseline with partial ambiguity resolution[J]. Empire survey review, 2015, 49(354): 212-220. DOI: 10.1179/1752270615Y.0000000047
    [60]
    李磊, 徐爱功, 祝会忠, 等. 长距离网络RTK基站间整周模糊度的快速解算[J]. 测绘科学, 2014, 39(10): 22-25.
    [61]
    王生朝. 北斗三频模糊度解算方法研究[D]. 徐州: 中国矿业大学, 2015.
    [62]
    GE Y L, DING S, QIN W J, et al. Performance of ionospheric-free PPP time transfer models with BDS-3 quad-frequency observations[J]. Measurement, 2020, 160: 107836. DOI: 10.1016/j.measurement.2020.107836
    [63]
    李博峰, 葛海波, 沈云中. 无电离层组合、Uofc和非组合精密单点定位观测模型比较[J]. 测绘学报, 2015, 44(7): 734-740.
    [64]
    YAN Z B, ZHANG X H. Assessment of the performance of GPS/Galileo PPP-RTK convergence using ionospheric corrections from networks with different scales[J]. Earth, planets and space, 2022, 74(1): 1-19. DOI: 10.1186/s40623-022-01602-9
    [65]
    YIN X, CHAI H Z, XU W B, et al. Realization and evaluation of real-time uncombined GPS/Galileo/BDS PPP-RTK in the offshore area of China’s Bohai Sea[J]. Marine geodesy, 2022, 45(6): 577-594. DOI: 10.1080/01490419.2022.2057628
    [66]
    LI P, CUI B B, HU J H, et al. PPP-RTK considering the ionosphere uncertainty with cross-validation[J]. Satellite navigation, 2022, 3(1): 1-13. DOI: 10.1186/s43020-022-00063-5
    [67]
    ZHANG X H, REN X D, CHEN J, et al. Investigating GNSS PPP-RTK with external ionospheric constraints[J]. Satellite navigation, 2022, 3(6): 1-13. DOI: 10.1186/s43020-022-00071-5
    [68]
    宋伟伟, 何成鹏, 辜声峰. 不同纬度区域电离层增强PPP-RTK性能分析[J]. 武汉大学学报(信息科学版), 2021, 46(2): 1832-1842.
    [69]
    CAI C S, LIU G, YI Z H, et al. Effect analysis of high-order ionospheric corrections on quad-constellation PPP[J]. Measurement science and technology, 2019, 30(2): 1-16. DOI: 10.1088/1361-6501/aaf555
    [70]
    黄令勇, 吕志平, 刘毅锟, 等. 三频BDS电离层延迟改正分析[J]. 测绘科学, 2015, 40(3): 12-15.
    [71]
    LI J L, YANG Y X, HE H B, et al. Benefits of BDS-3 B1C/B1I/B2a triple-frequency signals on precise positioning and ambiguity resolution[J]. GPS solutions, 2020, 24(4): 1-10. DOI: 10.1007/s10291-020-01016-8
    [72]
    YAN Z B, ZHANG X H. The performance of three-frequency GPS PPP-RTK with partial ambiguity resolution[J]. Atmosphere, 2022, 13(7): 1014. DOI: 10.3390/atmos13071014
    [73]
    陈少鑫, 徐良骥. GPS 电离层折射误差的三阶三频改正模型及精度分析[J]. 测绘通报, 2018(12): 10-14.
    [74]
    MARQUES H, MONICO G, AQUINO M. RINEX_HO: second-and third-order ionospheric corrections for RINEX observation files[J]. GPS solutions, 2011, 15(3): 305-314. DOI: 10.1007/s10291-011-0220-1
    [75]
    HAMMER M D, COX G A, BROWN W J. Geomagnetic virtual observatories: monitoring geomagnetic secular variation with the swarm satellites[J]. Earth plants and space, 2021, 73: 1-22. DOI: 10.1186/s40623-021-01357-9
    [76]
    TU R, ZHANG P F, ZHANG R, et al. Modeling and performance analysis of precise time transfer based on BDS triple-frequency un-combined observations[J]. Journal of geodesy, 2019, 93(6): 837-847. DOI: 10.1007/s00190-018-1206-3
    [77]
    LI D H, MI J Z, CHENG P F, et al. A cycle slip repair method against ionospheric effects and observations noises for BDS triple-frequency undifferenced phases[J]. Sensors, 2020, 20(10): 1-21. DOI: 10.3390/s20102819
    [78]
    ZHANG R C, GAO C F, WANG Z B, et al. Ambiguity resolution for long baseline in a network with BDS-3 quad-frequency ionosphere-weighted model[J]. Remote sensing, 2022, 14(7): 1-18. DOI: 10.3390/rs14071654
    [79]
    AN X D, MENG X L, CHEN H, et al. Modelling global ionosphere based on multi-constellation GNSS observations and IRI model[J]. Remote sensing, 2020, 12(3): 1-19. DOI: 10.3390/rs12030439
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (94) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return