GNSS World of China

Volume 47 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
MA Xiangtai, HU Yanfeng, DONG Xurong. Navigation accuracy and applicability analysis of GNSS technology in GEO and IGSO spacecraft[J]. GNSS World of China, 2022, 47(6): 1-8. doi: 10.12265/j.gnss.2022089
Citation: MA Xiangtai, HU Yanfeng, DONG Xurong. Navigation accuracy and applicability analysis of GNSS technology in GEO and IGSO spacecraft[J]. GNSS World of China, 2022, 47(6): 1-8. doi: 10.12265/j.gnss.2022089

Navigation accuracy and applicability analysis of GNSS technology in GEO and IGSO spacecraft

doi: 10.12265/j.gnss.2022089
  • Received Date: 2022-05-19
    Available Online: 2022-11-19
  • At present, the navigation of high-orbit spacecraft mainly relies on ground-based measurement and control systems. In order to study the feasibility of Global Navigation Satellite System (GNSS) technology in high-orbit spacecraft navigation, the navigation accuracy and adaptability of GNSS technology in geostationary earth orbit (GEO) and inclined geosynchronous orbit (IGSO) high-orbit spacecraft were analyzed and studied. The GNSS navigation satellite constellation was simulated using two-line orbital element (TLE) on November 9, 2021. GEO satellites at different sub-satellite points and IGSO satellites at different inclination angles were used as target satellites to carry out navigation experiments. The experimental results show that: In order to meet the number of satellites required for GNSS calculation, the number of visible satellites must be increased by receiving sidelobe signals; for GEO target satellites, when the receiver sensitivity is higher than −169 dB, the navigation accuracy can reach 30 m; the GPS system is used to conduct navigation and orbit determination experiments on 7 different GEO or IGSO orbits; the average accuracy of BeiDou-3 Navigation Satellite System (BDS-3), GPS, GLONASS, and Galileo in high-orbit spacecraft navigation is 28.03 m, 21.16 m, 37.15 m, and 25.09 m, respectively. GPS has the highest accuracy and GLONASS has the lowest accuracy, but it is also 45 m in most periods within.

     

  • loading
  • [1]
    杜兰. GEO卫星精密定轨技术研究[D]. 郑州: 解放军信息工程大学, 2006.
    [2]
    王猛, 单涛, 王盾. 高轨航天器GNSS技术发展[J]. 测绘学报, 2020, 49(9): 1158-1167. DOI: 10.11947/j.AGCS.2020.20200170
    [3]
    NING X L, WANG F, FANG J C. Implicit UKF and its observability analysis of satellite stellar refraction navigation system[J]. Aerospace science and technology, 2016(54): 49-58. DOI: 10.1016/j.ast.2016.04.010
    [4]
    LAIR J L, DUCHON P, RIANT P, et al. Satellite navigation by stellar refraction[J]. Acta astronautica, 1988, 17(10): 1069-1079. DOI: 10.1016/0094-5765(88)90190-7
    [5]
    KAI X, HONG Z. Performance evaluation of star sensor low frequency error calibration[J]. Acta astronautica, 2014, 98(1): 24-36. DOI: 10.1016/j.actaastro.2013.11.022
    [6]
    MILLS H R. Positional astronomy and astro-navigation made easy[M]. Stanley Thornes, 1978.
    [7]
    LIU J, MA J, TIAN J W, et al. X-ray pulsar navigation method for spacecraft with pulsar direction error[J]. Advances in space research, 2010, 46(11): 1409-1417. DOI: 10.1016/j.asr.2010.08.019
    [8]
    PSIAKI M L, MOHIUDDIN S. Modeling, analysis, and simulation of GPS carrier phase for spacecraft relative navigation[J]. Journal of guidance control and dynamics, 2007, 30(6): 1628-1639. DOI: 10.2514/1.29534
    [9]
    HAINES B, LICHTEN S, SRINIVASAN J, et al. A demonstration of unified TDRS/GPS tracking and orbit determination[C]// Goddard Space Flight Center, Flight Mechanics, 1995.
    [10]
    YUNCK T P, MELBOURNE W G, THOENTON C L. GPS-based satellite tracking system for precise positioning[J]. IEEE transactions on geoscience and remote sensing, 1985, 4(GE-23): 450-457. DOI: 10.1109/TGRS.1985.289434
    [11]
    BAUER F H, MOREAU M C, DAHLE-MELSAETHER M , et al. The GPS space service volume[J/OL]. [2022-06-20]. Proceedings of international technical meeting of the satellite division of the institute of navigation, 2006. https://ntrs.nasa.gov/api/citations/20060026278/downloads/20060026278.pdf
    [12]
    JOEL J K, JENNIFER E V, FRANK H B, et al. Use and protection of GPS sidelobe signals for enhanced navigation performance in high earth orbit[R/OL]. [2022-06-20]. Guidance, navigation and control, 2016. https://ntrs.nasa.gov/api/citations/20160001694/downloads/20160001694.pdf
    [13]
    巩玉振. 基于GNSS的高轨卫星定位技术研究[D]. 北京: 北京理工大学, 2015.
    [14]
    CAPUANO V, BLUNT P, BOTTERON C, et al. Standalone GPS L1 C/A receiver for lunar missions[J]. Sensors, 2016, 16(3): 347. DOI: 10.3390/s16030347
    [15]
    LARSON K, GAYLOR D, WINKLER S. Worst-case GPS constellation for testing navigation at geosynchronous orbit for GOES-R[J]. Advances in the astronautical sciences, 2013(149): 403-416.
    [16]
    李冰, 刘蕾, 王猛. GEO卫星GNSS导航在轨长期性能验证与分析[J]. 上海航天, 2017, 34(4): 133-143.
    [17]
    曹建峰, 张宇, 胡松杰, 等. CE5T星载GPS数据的定轨分析[J]. 系统工程与电子技术, 2016, 38(5): 1121-1125. DOI: 10.3969/j.issn.1001-506X.2016.05.23
    [18]
    陈雷. 高轨飞行器GNSS定位技术研究[D]. 长沙: 国防科技术大学, 2016.
    [19]
    JAMES J, SPILKER J , AXELARD P, et al. Global positioning system: theory and applications volume I [M]. Washington American Institute of Aeronautics and Astronautics, 1996: 234-242.
    [20]
    GPS ICD 200 (2006) IS-GPS-200 Revision D, IRN-200D-001: NAVSTAR global positioning system Interface Specification, NAVSTAR GPS Space Segment/Navigation User Interface. USA[R/OL]. [2022-06-20]. http://www.gps.gov/technical/icwg/IS-GPS-200D.pdf
    [21]
    石磊玉, 欧钢, 顾青涛, 等. 基于星上天线仰角约束的星间可视卫星集解析算法[J]. 国防科技大学学报, 2011, 33(4): 97-101. DOI: 10.3969/j.issn.1001-2486.2011.04.019
    [22]
    赵彦珍. 基于GNSS的高轨卫星定位技术研究[D]. 北京: 中国科学院国家空间科学中心, 2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(8)

    Article Metrics

    Article views (248) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return