多模GNSS融合的全球电离层建模及性能评估

Global ionospheric modeling and performance evaluation based on multi-GNSS

  • 摘要: 电离层延迟是GNSS卫星导航定位的主要误差源之一. 为了获取更高精度的电离层模型,建立了基于多模GNSS观测数据融合的全球电离层模型. 选取多模GNSS实验跟踪网(Multi-GNSS Experiment, MGEX)测站数据,系统评估了多种地磁环境下不同卫星系统组合基于球谐函数的全球电离层建模精度. 试验结果表明:在太阳活动低年期间,相较于GPS/北斗二号卫星导航系统(BeiDou-2 Navigation Satellite System, BDS-2)和GPS/北斗三号卫星导航系统(BeiDou-3 Navigation Satellite System, BDS-3)建模方法,融合GPS/BDS-2/BDS-3数据的电离层建模精度有所提升,其绝对平均偏差(mean absolute deviation, MAD)分别降低了0.08 TECU和0.04 TECU,标准差(standard deviations, STD)降低了0.22 TECU和0.19 TECU,均方根误差(root mean square error, RMSE)分别降低0.19 TECU和0.16 TECU. 在太阳活动高年,MAD分别降低1.61 TECU和0.10 TECU,STD分别降低0.39 TECU和0.19 TECU,RMSE改善了0.99 TECU和0.94 TECU;此外,GPS/GLONASS/Galileo/BDS/准天顶卫星系统(Quasi-Zenith Satellite System, QZSS)组合相较于GPS/GLONASS/BDS组合,其在磁平静期的MAD、STD和RMSE分别下降0.39 TECU、1.12 TECU和0.97 TECU;在磁暴期,三项指标分别下降了1.97 TECU、1.58 TECU和2.42 TECU. 综上,多模GNSS数据融合有效提升了电离层建模精度,为高精度导航定位和空间大气监测提供了更可靠的数据支撑.

     

    Abstract: Ionospheric delay represents one of the major error sources in GNSS positioning. To develop a more accurate ionospheric model, this study establishes a global ionospheric model by integrating multi-GNSS observations. Data from Multi-GNSS Experiment (MGEX) stations under various geomagnetic conditions were utilized to systematically evaluate the performance of spherical harmonic-based ionospheric modeling with different satellite system combinations. Experimental results indicate that during periods of low solar activity, the integration of GPS, BeiDou-2 Navigation Satellite System (BDS-2), and BeiDou-3 Navigation Satellite System (BDS-3) data improves modeling accuracy compared to using GPS/BDS-2 or GPS/BDS-3. Specifically, the mean absolute deviation (MAD) decreases by 0.08 TECU and 0.04 TECU, the standard deviation (STD) decreases by 0.22 TECU and 0.19 TECU, and the root mean square error (RMSE) decreases by 0.19 TECU and 0.16 TECU. During high solar activity periods, even more substantial enhancements are observed: the MAD decreases by 1.61 TECU and 0.10 TECU, the STD decreases by 0.39 TECU and 0.19 TECU, and the RMSE improves by 0.99 TECU and 0.94 TECU, respectively. Furthermore, the combined GPS/GLONASS/Galileo/BDS/Quasi-Zenith Satellite System (QZSS) system shows remarkable performance advantages over the GPS/GLONASS/BDS combination. During geomagnetically quiet conditions, the MAD, STD, and RMSE decrease by 0.39 TECU, 1.12 TECU, and 0.97 TECU, respectively. Under geomagnetic storm conditions, these three evaluation metrics decrease by 1.97 TECU, 1.58 TECU, and 2.42 TECU, respectively. In conclusion, multi-GNSS data effectively enhances ionospheric modeling accuracy and provides more reliable data support for high-precision navigation positioning and space environment monitoring.

     

/

返回文章
返回