一种多惯导数据的室内行人轨迹匹配算法

An indoor pedestrian trajectory matching algorithm with multiple inertial guidance data

  • 摘要: 针对惯导数据里的误差累计导致现有的轨迹匹配方法精度不高的问题,本文以智能手机惯导数据为基础,提出了一种多惯导数据下针对误差累计的室内行人轨迹匹配算法. 该算法首先结合惯导数据特性与室内环境特征,提出了针对性的室内轨迹匹配约束准则;随后通过自适应形变获得修正的方向矩形(oriented bounding box,OBB)后,进一步利用OBB对后续的轨迹进行独立校正,并且针对不同手持姿态分析以适应该算法,以提升匹配的准确度与效率;并对本文方法处理后的数据与其他方法数据进行对比分析. 实验证明,该方法在特征各异的轨迹上表现良好,准确率的增长率最高提升46.16%,优于其他方法,且在时间效率上满足匹配需求.

     

    Abstract: To address poor accuracy in existing track matching methods caused by inertial guidance data error accumulation, this study proposes an indoor pedestrian track matching algorithm using smartphone inertial sensors. The method combines inertial data characteristics with indoor environmental features to establish a targeted constraint criterion for track matching. An adaptively deformed oriented bounding box (OBB) corrects initial trajectories and independently adjusts subsequent paths. The algorithm analyzes diverse handheld postures to enhance adaptability. Experimental comparisons demonstrate that the proposed method performs robustly across trajectory types, increasing accuracy growth rates by up to 46.16% over existing approaches while meeting time-efficiency requirements for matching tasks.

     

/

返回文章
返回