动力学辅助低轨卫星星载GNSS实时精密定轨方法研究

Study on dynamic-assisted real-time precise orbit determination method for low earth orbit satellites using onboard GNSS

  • 摘要: 星载GNSS运动学定轨是低轨卫星实时定轨的主要手段. 通常,伪距单点定位能够获得米级精度的定轨结果,载波相位定轨可获得厘米级精度. 由于GNSS数据的缺失、观测卫星数不足、粗差或周跳探测失败等原因,会导致实时定轨不连续、误差增大或滤波发散等现象. 尽管动力学定轨方法精度较高、抗干扰能力强,但对力学精细模型要求较高,计算负荷较大,适合事后精密定轨. 本文以GNSS运动学定轨为主,利用简化的动力学模型短期预报轨道的精度较高的特性,通过自适应调整动力学因素与GNSS观测方程进行“松组合”或“紧组合”,实现动力学辅助低轨卫星星载GNSS实时精密定轨. 实时定轨算例中力学模型仅考虑40×40阶地球重力场,利用CNT实时精密星历和钟差产品,采用北斗卫星导航系统(BeiDou Navigation Satellite System, BDS)/GPS双系统观测数据进行实时定轨实验. 实验结果表明:伪距定轨精度仅能达到米级,载波相位定轨精度可达到厘米级. 实测数据中,由于周跳的影响,定轨结果中多处出现了米级的跳变;动力学辅助GNSS定轨有效去除米级跳变,得到了径向、切向和法向均方根(root mean square, RMS)分别为8.2 cm、8.1 cm和5.0 cm的可靠定轨结果,实现全时段厘米级定轨.

     

    Abstract: Onboard GNSS kinematic orbit determination is a primary approach for real-time orbit determination of low Earth orbit satellites. While pseudorange-based positioning typically achieves meter-level accuracy and carrier phase-based methods can reach centimeter-level precision, real-time orbit determination often faces challenges such as data loss, insufficient satellite visibility, gross errors, and undetected cycle slips, leading to discontinuities, increased errors, or filter divergence. Although dynamic models offer high accuracy and strong robustness, they require detailed force modeling and substantial computational resources, limiting their application mainly to post-processed precise orbit determination. This study adopts a GNSS kinematic-based approach, integrating a simplified dynamic model with high short-term predictive accuracy through adaptive “loose” or “tight” combinations of dynamics and GNSS observations, enabling dynamic-assisted real-time precise orbit determination. In the real-time experiments, a 40×40 Earth gravity field model was used, along with CNT real-time orbit and clock products and BeiDou Satellite Navigation System (BDS)/GPS dual-system data. Results show meter-level accuracy with pseudorange, and centimeter-level accuracy with carrier phase observations. Notably, meter-level discontinuities caused by cycle slips were effectively mitigated through dynamic assistance, achieving consistent centimeter-level accuracy with root mean square (RMS) values of 8.2 cm (radial), 8.1 cm (along-track), and 5.0 cm (cross-track) over the entire observation period.

     

/

返回文章
返回