GNSS World of China

Volume 45 Issue 3
Jun.  2020
Turn off MathJax
Article Contents
SHEN Jianhua. Method and precision analysis of GPS/PWV sensing based on meteorological elements interpolation[J]. GNSS World of China, 2020, 45(3): 89-95. doi: DOI:10.13442/j.gnss.1008-9268.2020.03.016
Citation: SHEN Jianhua. Method and precision analysis of GPS/PWV sensing based on meteorological elements interpolation[J]. GNSS World of China, 2020, 45(3): 89-95. doi: DOI:10.13442/j.gnss.1008-9268.2020.03.016

Method and precision analysis of GPS/PWV sensing based on meteorological elements interpolation

doi: DOI:10.13442/j.gnss.1008-9268.2020.03.016
  • Publish Date: 2020-06-15
  • Accurate acquisition of station pressure and temperature plays a vital role in the accuracy of GPS water vapor inversion, However, due to the differences in the development status of GPS continuous operation observation stations in various parts of China, A considerable part of the GPS weather station network is not equipped with pressure and temperature sensors, and failed to effectively collect accurate station pressure and temperature related data, Which has great influence on real-time acquisition of water vapor above the station, This paper proposes an inverse distance weighting method that increases altitude correction, and validates the method using GNSS weather station network data distributed throughout the country. Experimental results show that the accuracy of the pressure and temperature parameters obtained by this method meets the needs of water vapor solution. At the same time, the method mentioned in this article is compared with the GPT2 temperature and pressure model, which proves that the accuracy of the temperature and pressure parameters obtained in this paper is better than that of the GPT2 weather model.

     

  • loading
  • [1]
    李国平. 地基GPS气象学[M]. 北京:科学出版社, 2010.
    [2]
    ADAMS D K, FERNANDES R M S, MAIA J M F. GNSS precipitable water vapor from an amazonian rain forest flux tower [J]. Journal of atmospheric and oceanic technology,2011,28(10):1192-1198.DOI: 10.1175/JTECH-D-11-00082-1.
    [3]
    毕研盟, 毛节泰, 刘晓阳, 等.应用地基GPS遥感倾斜路径方向大气水汽总量[J]. 地球物理学报, 2006, 49(2): 335-342.
    [4]
    BENDER M,RAABE A. Preconditions to ground based GPS water vapor tomography [J]. Annales geophysicae,2007, 25(8):1727-1734.DOI: 10.5194/angeo-25-1727-2007.
    [5]
    JIANG P, YE S R,CHEN D Z,et al. Retrieving precipitable water vapor data using GPS zenith delays and global reanalysis data in china [J]. Remote sensing, 2016,8(5): 389. DOI: 10.3390/rs8050389.
    [6]
    YEH T K,HONG J S,WANG C S,et al. Determining the precipitable water vapor with groundbased GPS and comparing its yearly variation to rainfall over Taiwan [J]. Advances in space research, 2016, [JP1]57(12): 2496-2507. DOI: 10.1016/j.asr.2016. 04.002.
    [7]
    万蓉, 付志康, 李武阶, 等. 地基GPS斜路径水汽反演技术及资料应用初探[J]. 气象, 2015, 41(4): 447-455.
    [8]
    AMIRI-SIMKOOEI A R, TIBERIUS C C J M. Assessing receiver noise using GPS short baseline time series[J]. GPS solutions, 2007, 11(1): 21-35. DOI: 10.1007/s10291-006-0026-8.
    [9]
    BEVIS M,BUSINGER S,CHISWELL S,et al. GPS meteorology: mapping zenith wet delays onto precipitable water[J]. Journal of applied meteorology, 1994, 33(3): 379-386.
    [10]
    朱爽. 北京地区地基GPS加权平均温度计算本地化模型研究[J]. 测绘工程, 2014, 23(4):28-32.
    [11]
    NIELL A E,COSTER A J,SOLHEIM F S,et al. Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer,GPS,and VLBI [J]. Journal of atmospheric and oceanic technology, 2001, 18(6):830-850.
    [12]
    MUSA T A, AMIR S,OTHMAN R, et al. GPS meteorology in a lowlatitude region:remote sensing of atmospheric water vapor over the malaysian peninsula [J]. Journal of atmospheric and solarterrestrial physics, 2011,73(16): 2410-2422. DOI: 10.1016/j.jastp.2011.08.014.
    [13]
    SHOJI Y. Retrieval of water vapor inhomogeneity using the japanese nationwide GPS array and its potential for prediction of convective precipitation [J]. Journal of the meteorological society of Japan, 2013, 91(1): 43-62. DOI: 10.2151/jmsj.2013-103.
    [14]
    杨娇, 史岚, 王茜雯, 等. 基于GPS数据的MODIS近红外水汽线性回归模型[J]. 热带地理, 2020, 40(1): 137-144.
    [15]
    范士杰, 胡卓, 彭秀英,等.GPS水汽反演的双向滤波结果分析[J]. 测绘科学, 2019,44(12):179-183.
    [16]
    郭巍,尹球,杜明斌,等. 利用地基北斗站反演大气水汽总量的精度检验[J]. 应用气象学报, 2015(3): 346-353.
    [17]
    施闯, 王海深, 曹云昌, 等. 基于北斗卫星的水汽探测性能分析[J]. 武汉大学学报(信息科学版), 2016,41(3):285-289.
    [18]
    王维, 宋淑丽, 王解先, 等. 长三角地区多模GNSS斜路径观测分布及水汽仿真层析[J]. 测绘学报, 2016,45(2): 164-169,177.
    [19]
    姚宜斌, 赵庆志, 罗亦泳. 附加虚拟信号精化水汽层析模型的方法[J]. 武汉大学学报(信息科学版), 2017, 42(11): 1658-1664.
    [20]
    汤中山, 吴良才. 三种对流层延迟模型的精度对比[J]. 测绘科学,2017,42(2):11-13.
    [21]
    王晓英, 戴仔强, 曹云昌, 等. 中国地区地基GPS加权平均温度Tm统计分析[J]. 武汉大学学报(信息科学版), 2011,36(4): 412-416.
    [22]
    曹云昌,方宗义. 地基GPS气象站网建设指南[M]. 北京:气象出版社, 2007.
    [23]
    樊子德, 李佳霖, 邓敏. 顾及多因素影响的自适应反距离加权插值方法[J]. 武汉大学学报(信息科学版), 2016, 41(6):842-847.
    [24]
    姚宜斌, 曹娜, 许超钤, 等. GPT2模型的精度检验与分析[J]. 测绘学报, 2015, 44(7): 726-733.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (319) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return