GNSS World of China

Volume 45 Issue 3
Jun.  2020
Turn off MathJax
Article Contents
SONG Fucheng, SHI Shuangshuang, SHI Yunfei, ZHOU Ruichen. Analysis of ionospheric TEC  disturbances caused by typhoon Lekima based on IGS Data[J]. GNSS World of China, 2020, 45(3): 83-88. doi: DOI:10.13442/j.gnss.1008-9268.2020.03.015
Citation: SONG Fucheng, SHI Shuangshuang, SHI Yunfei, ZHOU Ruichen. Analysis of ionospheric TEC  disturbances caused by typhoon Lekima based on IGS Data[J]. GNSS World of China, 2020, 45(3): 83-88. doi: DOI:10.13442/j.gnss.1008-9268.2020.03.015

Analysis of ionospheric TEC  disturbances caused by typhoon Lekima based on IGS Data

doi: DOI:10.13442/j.gnss.1008-9268.2020.03.015
  • Publish Date: 2020-06-15
  • In this paper we use the global GIM grid ionosphere data provided by IGS to investigate the ionospheric TEC disturbances induced by typhoon lekima in 2019. By means of the sliding interquartile range method, the temporal and regional spatial changes of the ionospheric TEC during typhoon Lekima were analyzed. It was found that the ionospheric TEC showed positive abnormal changes on the fifth day before the typhoon. On the second day after typhoon landing, the ionospheric TEC anomaly over the typhoon affected area changes from positive anomaly to negative anomaly and then changes to positive anomaly. The maximum value of positive anomaly reaches 8 TECU, and the maximum value of negative anomaly reaches 6 TECU. The maximum abnormal point does not coincide with the eye of the wind, but appears in the southwest region of the centre. This analysis suggests that this ionospheric TEC  disturbances may be related to the change of wind speed and direction during the landing of typhoon

     

  • loading
  • [1]
    BAUER S J. An apparent ionospheric response to the passage of hurricanes[J].Journal of geophysical research atmospheres, 1958, 63(1):265-269.DOI: 10.1029/JZ063i001p00265.
    [2]
    沈长寿.台风与电离层 foF2相关性的探讨[J].空间科学学报,1982,2(4):335-340.
    [3]
    HUANG Y N, CHENG K, CHEN S W. On the detection of acoustic gravity waves generated by typhoon by use of real time HF Doppler frequency shift sounding system[J]. Radio science, 1985, 20(4):897-906.DOI: 10.1029/RS020i004p00897.
    [4]
    肖赛冠,郝永强,张东和,等. 电离层对台风响应的全过程的特例研究[J].地球物理学报,2006,49(3):623-628.
    [5]
    毛田,王劲松,杨光林,等. 台风“麦莎”对电离层TEC的影响[J].科学通报,2009,54(24):3858-3863.
    [6]
    余涛,王云冈,毛田,等. 台风期间厦门电离层变化的一次特例分析[J].气象学报,2010,68(4):569-576.
    [7]
    程国生,陈烨,杜亚军. 0418号台风“艾利”对电离层电子浓度总含量的扰动分析[J].自然灾害学报,2013,22(2):84-90.
    [8]
    RICE D D, SOJKA J J, ECCLES J V, et al, Typhoon Melor and ionospheric weather in the asian sector: a case study[J]. Radio science,2012,47(4):1-9.DOI: 10.1029/2011RS004917.
    [9]
    许九靖,柯福阳,赵兴旺.基于地基GPS研究台风引起电离层TEC的变化特征[J].全球定位系统,2018,43(6):98-104.
    [10]
    闫慧,严颂华,陈能成.利用GPS数据研究江西区域电离层对台风“潭美”的响应[J].科学技术与工程,2018,18(6):14-21.
    [11]
    STENING R J. Modeling the low latitude Fregion[J]. Journal of atmospheric and terrestrial physics,1992,54(11-12):1387-1412.DOI: 10.1016/0021-9169(92)90147-D.
    [12]
    HANG D H, MO X H, ERCHA A, et al. Case study of ionospheric fluctuation over mid-latitude region during one large magnetic storm[J]. Science China technological sciences,2012,55(5):1198-1206.DOI: 10.1007/s11431-012-4785-x.
    [13]
    LIU J Y, CHEN Y I, PULINETS S A, et al. Seismo-ionospheric signatures prior to M≥6.0 Taiwan earthquakes[J].Geophys research letters,2000,27(19):3113-3116.DOI: 10.1029/2000gl011395.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (296) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return