GNSS World of China

Volume 44 Issue 2
Apr.  2019
Turn off MathJax
Article Contents
GAO Yao, YNAG Li, ZHU Enhui, ZHAO Shuang. Effect of non-uniform layering on 3D water vapor chromatography of GNSS[J]. GNSS World of China, 2019, 44(2): 46-53. doi: DOI:10.13442/j.gnss.1008-9268.2019.02.006
Citation: GAO Yao, YNAG Li, ZHU Enhui, ZHAO Shuang. Effect of non-uniform layering on 3D water vapor chromatography of GNSS[J]. GNSS World of China, 2019, 44(2): 46-53. doi: DOI:10.13442/j.gnss.1008-9268.2019.02.006

Effect of non-uniform layering on 3D water vapor chromatography of GNSS

doi: DOI:10.13442/j.gnss.1008-9268.2019.02.006
  • Publish Date: 2019-04-15
  • In view of the current low-precision accuracy of ground-based GNSS tomographic water vapor, this paper proposes a method for non-uniform stratification of the vertical direction of the mesh, which improves the accuracy of the regional tomographic results. Based on multisystem GNSS observation data, the water vapor distribution over the area of 111.5~115.5° east longitude and 33.6~35.6° north latitude in Henan Province is detected by tomography, and the influence of vertical stratification method on the chromatographic results is studied. The vertical stratification method adopts uniform and non-uniform stratification methods, and the results of water vapor density are very close to those of sounding inversion. By contrast, the non-uniform tomographic data analysis shows good data accuracy in correlation coefficient, root mean square error and mean deviation. The non-uniform stratification method can obtain better atmospheric water vapor inversion results.

     

  • loading
  • [1]
    BEVIS M, BUSINGER S, HERRING T A, et al. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of Geophysical Research Atmospheres, 1992, 97(D14):15787-15801.DOI:10.1029/92JD015.7
    [2]
    FLORES A, RUFFINI G, RIUS A. 4D tropospheric tomography using GPS slant wet delays[J]. Annales Geophysicae, 2000, 18(2):223-234.
    [3]
    SEKO H, SHIMADA S, NAKAMURA H, et al. Three-dimensional distribution of water vapor estimated from tropospheric delay of GPS data in a mesoscale precipitation system of the Baiu front[J]. Earth, Planets and Space, 2000, 52(11):927-933.
    [4]
    TROLLER M, GEIGER A, BROCKMANN E, et al. Determination of the spatial and temporal variation of tropospheric water vapour using CGPS networks[J]. Geophysical Journal International, 2006, 167(2):509520.DOI: 10.1111/j.1365-246X.2006.03101.X
    [5]
    宋淑丽. 地基GPS网对水汽三维分布的监测及其在气象学中的应用[D]. 上海:中国科学院研究生院(上海天文台), 2004.
    [6]
    曹玉静. 地基GPS层析大气三维水汽及其在气象中的应用[D]. 北京:中国气象科学研究院, 2012.
    [7]
    江鹏. 地基GNSS探测2D/3D大气水汽分布技术研究[D].武汉:武汉大学,2014.
    [8]
    于胜杰, 柳林涛, 梁星辉. 约束条件对GPS水汽层析解算的影响分析[J]. 测绘学报, 2010, 39(5):491-496.
    [9]
    毕研盟, 毛节泰, 毛辉. 海南GPS网探测对流层水汽廓线的试验研究[J]. 应用气象学报, 2008, 19(4):412-419.
    [10]
    汤中山. 地基GPS反演大气可降水量及三维层析的应用研究[D].南昌:东华理工大学,2016.
    [11]
    张尊良. GPS三维水汽层析的算法研究与实现[D]. 青岛:中国石油大学(华东), 2014.
    [12]
    熊建华. 地基GPS层析三维大气水汽模型研究[D]. 成都:西南交通大学, 2016.
    [13]
    薛骐. 地基GPS水汽反演及水汽层析研究[D].西南交通大学,2017.
    [14]
    王维, 王解先. 基于代数重构技术的对流层水汽[JP2]层析[J]. 计算机应用, 2011, 31(11):3149-3151,3156.
    [15]
    曹玉静, 刘晶淼, 廖荣伟,等. 两种垂直分层方法对GPS水汽层析结果的影响[J]. 气象与环境学报, 2014(6):125-133.
    [16]
    王维, 王解先. 联合迭代重构算法在对流层水汽三维重构中的应用研究[J]. 大地测量与地球动力学, 2011, 31(6):100-103,120.
    [17]
    毕研盟, 毛节泰, 毛辉. 海南GPS网探测对流层水汽廓线的试验研究[J]. 应用气象学报, 2008, 19(4):412-419.
    [18]
    王晓英. 地基GNSS层析对流层水汽若干关键技术研究[D].南京:南京信息工程大学,2013.
    [19]
    熊建华. 地基GPS层析三维大气水汽模型研究[D]. 成都:西南交通大学, 2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (303) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return