GNSS World of China

Volume 44 Issue 1
Feb.  2019
Turn off MathJax
Article Contents
LIU Lei, YANG Mei, YAO Yibin, Wang Youkun. Analysis of ionospheric VTEC at Wuhan station during 24th Solar Cycle[J]. GNSS World of China, 2019, 44(1): 23-31. doi: DOI:10.13442/j.gnss.1008-9268.2019.01.004
Citation: LIU Lei, YANG Mei, YAO Yibin, Wang Youkun. Analysis of ionospheric VTEC at Wuhan station during 24th Solar Cycle[J]. GNSS World of China, 2019, 44(1): 23-31. doi: DOI:10.13442/j.gnss.1008-9268.2019.01.004

Analysis of ionospheric VTEC at Wuhan station during 24th Solar Cycle

doi: DOI:10.13442/j.gnss.1008-9268.2019.01.004
  • Publish Date: 2019-02-15
  • By using the GPS-VTEC data observed at Wuhan station (30.5N, 114.4E) of Crustal Movement Observation Network of China (CMONOC) from 2008 to 2015, the variations of ionospheric Vertical Total Electron Content (VTEC) are analyzed, and the VTEC correlation with solar activities are discussed. Results show that the diurnal variations of GPS-VTEC show a peak value at about 14:00-16:00LT; meanwhile, VTEC shows day-to-day variability of ionospheric characteristics, a large difference exists especially in the VTEC peak. During high solar activity years (2011-2015), VTEC presents double-peak structure, that is, the so-called Semiannual anomaly, the Spring peak value is greater than the Autumn peak, and Winter anomaly is also more obvious during this period. Among all seasons (except for the Spring), the variation of GPS-VTEC correlated best with the F10.7p, followed by the F10.7, and then the SSN. The correlation between the daytime VTEC and the solar activity is superior to the correlation between the night-time VTEC and the solar activity. The correlation between VTEC and the solar activity is the best in Autumn(MaxF10.7p=0.92232, MaxSSN=0.85575), while the worst in Winter(MinF10.7p=0.79028, Min.SSN=0.72703).

     

  • loading
  • [1]
    袁运斌. 基于GPS的电离层监测及延迟改正理论与方法的研究[D]. 武汉: 中国科学院测量与地球物理研究所, 2002.
    [2]
    LIU L, WAN W, NING B Q, et al. Solar activity variations of the ionospheric peak electron density[J]. Journal of Geophysical Research: Space Physics, 2006, 113911):1-13.
    [3]
    HERNANDEZ-PAJARES M, JUAN J M, SANZ J, et al. The IGS VTEC maps: a reliable source of ionospheric information since 1998[J]. Journal of Geodesy, 2008, 83(3): 263-275.
    [4]
    TITHERIDGE J E. The electron content of the southern mid-latitude ionosphere, 1965—1971[J]. Journal of Atmospheric and Terrestrial Physics, 1973, 35(5): 981-1001.
    [5]
    RISHBETH H, MULLER-WODARG I C F, ZOU L, et al. Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion[C]//Annales Geophysicae. Springer-Verlag, 2000, 18(8): 945-956.
    [6]
    YONEZAWA T. The solar-activity and latitudinal characteristics of the seasonal, non-seasonal and semi-annual variations in the peak electron densities of the F2-layer at noon and at midnight in middle and low latitudes[J]. Journal of Atmospheric and Terrestrial Physics, 1971, 33(6): 889-907.
    [7]
    万卫星, 宁百齐, 刘立波,等. 中国电离层TEC现报系统[J]. 地球物理学进展, 2007, 22(4):1040-1045.
    [8]
    萧佐, 张东和. 通过 GPS 测量数据研究电离层电子总含量的逐日变化[J]. 空间科学学报, 2000, 20(2): 97-102.
    [9]
    陈艳红, 万卫星, 刘立波, 等. 武汉地区电离层电子浓度总含量的统计经验模式研究[J]. 空间科学学报, 2002, 22(1): 27-35.
    [10]
    余涛. 中低纬电离层电场的模拟研究及电场对电离层年度变化的影响[D]. 中国科学院武汉物理与数学研究所, 2003.
    [11]
    霍星亮, 袁运斌, 欧吉坤, 等. 基于 GPS 资料研究中国区域电离层 TEC 的周日变化, 半年度及冬季异常现象[J]. 自然科学进展, 2005, 15(5): 626-630.
    [12]
    EZQUER R G, MOSERT M, CORBELLA R, et al. Day-to-day variability of ionospheric characteristics in the American sector [J]. Advances in Space Research, 2004,34(9): 1887-1893.
    [13]
    蔡昌盛, 高井祥, 李征航. 利用GPS监测电离层总电子含量的季节性变化[J]. 武汉大学学报:信息科学版, 2006, 31(5):451-453,465.
    [14]
    LIU L B, WAN W X, NING B Q, et al. Climatology of the mean total electron content derived from GPS global ionospheric maps[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A6)
    [15]
    LIU L B, CHEN Y D. Statistical analysis of solar activity variations of total electron content derived at Jet Propulsion Laboratory from GPS observations[J]. Journal of Geophysical Research: Space Physics, [JP2]2009, 114, A10311. DOI: 1029/2009JA014533.
    [16]
    於晓, 万卫星, 刘立波, 等. 欧洲地区电离层峰值电子密度逐日变化的相关距离研究[J]. 地球物理学报, 2007, 50(5): 1283-1288.
    [17]
    MUKHERJEE S, SARKAR S, PUROHIT P K, et al. Seasonal variation of total electron content at crest of equatorial anomaly station during low solar activity conditions[J]. Advances in Space Research, 2010, 46(3): 291-295.
    [18]
    武业文. 利用全球导航卫星研究电离层总电子含量特性[D].西安: 西安电子科技大学, 2013.
    [19]
    余涛, 万卫星, 刘立波, 等. 电离层电场的半年变化对 F2 区峰值电子浓度的影响[J]. 地球物理学报, 2006, 49(3): 616-622.
    [20]
    TORR M R, TORR D G. The seasonal behaviour of the F2-layer of the ionosphere[J]. Journal of Atmospheric and Terrestrial Physics, 1973, 35(12): 2237-2251.
    [21]
    MIILLWARD G H, RISHBETH H, FULLER-ROWELL T J, et al. Ionospheric F2 layer seasonal and semiannual variations [J]. Journal of Geophysical Research: Space Physics, 1996, 101(A3): 5149-5156.
    [22]
    马瑞平, 徐寄遥, 廖怀哲. f0 F2 半年变化的特征和一种可能机制[J]. 地球物理学报, 2002, 45(6): 766-772.
    [23]
    BHUYAN P K, BORAH R R. TEC derived from GPS network in India and comparison with the IRI[J]. Advances in Space Research, 2007, 39(5): 830-840.
    [24]
    蔡超军, 黄江, 邓柏昌,等. IRI2007预测TEC在广州地区的适用性分析[J]. 空间科学学报, 2013, 33(3):277-285.
    [25]
    刘立波, 万卫星, 陈一定, 等. 电离层与太阳活动性关系[J]. 科学通报, 2011, 56(7): 477-487.
    [26]
    RISHBETH H. F-region links with the lower atmosphere?[J]. Journal of atmospheric and solarterrestrial physics, 2006, 68(3): 469-478.
    [27]
    PULINETS S A, LIU J Y. Ionospheric variability unrelated to solar and geomagnetic activity[J]. Advances in Space Research, 2004, 34(9): 1926-1933.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (389) PDF downloads(112) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return