GNSS World of China

Volume 47 Issue 1
Mar.  2022
Turn off MathJax
Article Contents
LIU Guangming, HU Yu, SHA Feng, XIE Guojun, CHENG Wei. The current situation and development of the commonly-used geocentric coordinate system in China[J]. GNSS World of China, 2022, 47(1): 115-120. doi: 10.12265/j.gnss.2021082701
Citation: LIU Guangming, HU Yu, SHA Feng, XIE Guojun, CHENG Wei. The current situation and development of the commonly-used geocentric coordinate system in China[J]. GNSS World of China, 2022, 47(1): 115-120. doi: 10.12265/j.gnss.2021082701

The current situation and development of the commonly-used geocentric coordinate system in China

doi: 10.12265/j.gnss.2021082701
  • Received Date: 2021-08-27
    Available Online: 2022-02-23
  • In this paper, the current status of CGCS2000, BeiDou coordinate system (BDCS) and WGS-84 coordinate system in common use in China is introduced, the connection and difference between them are analyzed, the existing problems and limitations are pointed out, and some suggestions for the further development of CGCS2000 and BDCS in China are put forward by referring to foreign experience. CGCS2000 reference frame has been established for more than 20 years. It is not current and is more suitable for 2D coordinate application scenarios requiring unity and stability. Therefore, it should be maintained continuously and updated regularly. There are tens of thousands of continuously operating refererce station (CORS) in China, and it is necessary and conditional to establish a real-time reference frame in China for higher precision 3D coordinate application scenarios. For a long time, people used to refer to the Global Navigation Satelite system (GNSS) coordinates as WGS-84, which became synonymous with the geocentric coordinate system. In production practice, it is not important which coordinate system a geocentric coordinate belongs to, but the three elements of a geocentric coordinate must be focused on, such as precision, calendar element and frame. There is no essential difference between BDCS and WGS-84. Based on the practice of NGA, the concept of BDCS ground-based and space-based reference frame is expanded to make BDCS global, current and accurate at the same time. The role of the BDCS reference framework after concept extension is equivalent to “WGS84+IGS”. In digital Earth, 3S integration, smart city and other applications, CGCS2000 and BDCS dual benchmark services can be adopted. Based on THE CGCS2000 base map, the expanded BDCS benchmark can be used in high-precision applications, which can take into account the standards and the current situation, and meet the needs of globalization and precision.

     

  • loading
  • [1]
    中国人民解放军总装备部. 2000中国大地测量系统, 国家军用标准: GJB 6304—2008[S]. 2008.
    [2]
    中国卫星导航系统管理办公室. 北斗卫星导航系统空间信号接口控制文件公开服务信号B11(1.0版)[S]. 2012.
    [3]
    中国卫星导航系统管理办公室. 北斗卫星导航系统空间信号接口控制文件公开服务信号B1C、B2a(测试版)[S]. 2017.
    [4]
    ALTAMIMI Z, REBISCHUNG P, METIVIER L, et al. Analysis and results of ITRF2014[R/OL]. [2021-03-10]. https://www.iers.org/SharedDocs/Publikationen/EN/IERS/Publications/tn/TechnNote38/tn38.pdf?__blob=publicationFile&v=4
    [5]
    魏子卿. 2000中国大地坐标系[J]. 大地测量与地球动力学, 2008, 28(6): 1-5.
    [6]
    程鹏飞, 成英燕, 秘金钟, 等. 国家大地坐标系建立的理论与实践[M]. 北京: 测绘出版社, 2017.
    [7]
    宁津生, 王华, 程鹏飞, 等. 2000国家大地坐标系框架体系建设及其进展[J]. 武汉大学学报(信息科学版), 2015, 40(5): 569-573.
    [8]
    程鹏飞, 成英燕. 我国毫米级框架实现与维持发展现状和趋势[J]. 测绘学报, 2017, 46(10): 1327-1335. DOI: 10.11947/j.AGCS.2017.20170336
    [9]
    杨元喜, 徐天河, 薛树强. 我国海洋大地测量基准与海洋导航技术研究进展与展望[J]. 测绘学报, 2017, 46(1): 1-8. DOI: 10.11947/j.AGCS.2017.20160519
    [10]
    魏子卿, 刘光明, 吴富梅. 2000中国大地坐标系: 中国大陆速度场[J]. 测绘学报, 2011, 40(4): 403-410.
    [11]
    王文利, 郭春喜, 丁黎, 等. 全国一等水准点高程近20年变化分析[J]. 测绘学报, 2019, 48(1): 1-8. DOI: 10.11947/j.AGCS.2019.20170589
    [12]
    魏子卿, 吴富梅, 刘光明. 北斗坐标系[J]. 测绘学报, 2019, 48(7): 805-809.
    [13]
    曾安敏, 明锋, 景一帆. WGS84坐标框架与我国BDS坐标框架的建设[J]. 导航定位学报, 2015, 3(3): 43-48,68.
    [14]
    杨元喜, 陆明泉, 韩春好. GNSS互操作若干问题[J]. 测绘学报, 2016, 45(3): 253-259. DOI: 10.11947/j.AGCS.2016.20150653
    [15]
    魏子卿. 2000中国大地坐标系及其与WGS-84的比较[J]. 大地测量与地球动力学, 2008, 28(5): 1-5.
    [16]
    程鹏飞, 文汉江, 成英燕, 等. 2000国家大地坐标系椭球参数与GRS 80和WGS 84的比较[J]. 测绘学报, 2009, 38(3): 189-194. DOI: 10.3321/j.issn:1001-1595.2009.03.001
    [17]
    吴富梅, 刘光明, 魏子卿. 利用局域欧拉矢量法建立CGCS2000速度场模型[J]. 武汉大学学报(信息科学版), 2012, 37(4): 432-435.
    [18]
    国家测绘地理信息局. 大地测量控制点坐标转换技术规范. 测绘行业标准: CH/T 2014—2016[S]. 2016.
    [19]
    National Geospatial-Intelligence Agency. Recent update to WGS 84 reference frame and NGA transition to IGS ANTEX [R]. 2021.
    [20]
    National Geospatial-intelligence Agency. NGA GNSS division precise ephemeris parameters[R]. 2018.
    [21]
    韩春好. 时空测量原理[M]. 北京: 科学出版社, 2017.
    [22]
    中国卫星导航系统管理办公室. 北斗坐标系模板[R]. 2019.
    [23]
    计国锋, 杨志强, 贾小林. MGEX和iGMAS的多系统轨道和钟差产品精度分析[J]. 大地测量与地球动力学, 2019, 39(1): 13-19.
    [24]
    党亚民, 章传银, 陈俊勇, 等. 现代大地测量基准[M]. 北京: 测绘出版社, 2015.
    [25]
    中国卫星导航定位协会. 2021中国卫星导航与位置服务产业发展白皮书[R]. 2021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(3)

    Article Metrics

    Article views (446) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return