GNSS World of China

Volume 46 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
XIAO Xingxing, LYU Weicai, ZHONG Chen, CAO Jinjin, LI Yanjie, ZHANG Can. Iversion of normalized difference vegetation index based on GPS-IR[J]. GNSS World of China, 2021, 46(6): 118-124. doi: 10.12265/j.gnss.2021060901
Citation: XIAO Xingxing, LYU Weicai, ZHONG Chen, CAO Jinjin, LI Yanjie, ZHANG Can. Iversion of normalized difference vegetation index based on GPS-IR[J]. GNSS World of China, 2021, 46(6): 118-124. doi: 10.12265/j.gnss.2021060901

Iversion of normalized difference vegetation index based on GPS-IR

doi: 10.12265/j.gnss.2021060901
  • Received Date: 2021-06-09
    Available Online: 2021-12-17
  • In view of the fact that GPS receiver is sensitive to the water content of surrounding vegetation when receiving L-band signal, the normalized difference vegetation index (NDVI) of the station is retrieved by using the change of GPS reflected signal. In this paper, the normalized microwave reflection index (NMRI) calculated from the continuous observation data of two GPS reference stations in recent five years is used to construct a univariate linear model for NDVI inversion. The correlation coefficients R of the inversion results are 0.626 53 and 0.625 73 respectively, and the root mean square error root mean square error (RMSE) are 0.051 29 and 0.055 08 respectively. The correlation coefficients of the inversion results are increased by 2% and 6% respectively by using BP neural network model, which indicates that the regional NDVI inversion results of GPS-interferometric reflectometry (GPS-IR) have high reliability. This study provides a theoretical support for obtaining accurate position, real-time continuous and high-resolution NDVI.

     

  • loading
  • [1]
    HIRD J N, MCDERMID G J. Noise reduction of NDVI time series: an empirical comparison of selected techniques[J]. Remote sensing of environment, 2009, 113(1): 249-258. DOI: 10.1016/j.rse.2008.09.003
    [2]
    杨达, 易桂花, 张廷斌, 等. 青藏高原植被生长季NDVI时空变化与影响因素[J]. 应用生态学报, 2021, 32(4): 1361-1372.
    [3]
    崔光茫. 光学遥感图像质量提升及评价技术研究[D]. 杭州: 浙江大学, 2016.
    [4]
    郑南山, 丰秋林, 刘晨, 等. GPS 反射信号信噪比与 NDVI 相关性研究[J]. 武汉大学学报(信息科学版), 2019, 44(10): 1423-1429.
    [5]
    LARSON K M, NIEVINSKI F G. GPS snow sensing: results from the earthscope plate boundary observatory[J]. GPS solutions, 2013, 17(3): 41-52. DOI: 10.1007/s10291-012-0259-7
    [6]
    CHEW C C, SMALL E E, LARSON K M, et al. Effects of near-surface soil moisture on GPS SNR data: development of a retrieval algorithm for volumetric soil moisture[J]. IEEE transactions on geoscience and remote sensing, 2014, 52(1): 537-543. DOI: 10.1109/TGRS.2013.2242332
    [7]
    SMALL E E, LARSON K M, BRAUN J J. Sensing vegetation growth with reflected GPS signals[J]. Geophysical research letters, 2010, 37(12): 1-5. DOI: 10.1029/2010GL042951
    [8]
    LARSON K M, SMALL E E. Normalized microwave reflection index, part 1: a vegetation measurement derived from GPS networks[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2014, 7(5): 1501-1511. DOI: 10.1109/JSTARS.2014.2300116
    [9]
    WAN W, LARSON K M, SMALL E E, et al. Using geodetic GPS receivers to measure vegetation water content[J]. GPS solution, 2015, 19(2): 237-248. DOI: 10.1007/s10291-014-0383-7
    [10]
    曹庆源. 菲涅尔积分计算公式及其应用[J]. 武汉大学学报(信息科学版), 1986, 11(2): 57-64.
    [11]
    LARSON K M. GPS interferometric reflectometry: applications to surface soil moisture, snow depth, and vegetation water content in the western united states[J]. Wiley interdisciplinary reviews:water, 2016, 3(6): 775-787. DOI: 10.1002/wat2.1167
    [12]
    CHEW C, SMALL E E, LARSON K M. An algorithm for soil moisture estimation using GPS-interferometric reflectometry for bare and vegetated soil[J]. GPS solution, 2016, 20(3): 525-537. DOI: 10.1007/s10291-015-0462-4
    [13]
    JONES M O, KIMBALL J S, SMALL E E, et al. Comparing land surface phenology derived from satellite and GPS network microwave remote sensing[J]. International journal of biometeorology, 2014, 58(6): 1305-1315. DOI: 10.1007/s00484-013-0726-z
    [14]
    ESTEY L H, MEERTENS C M. TEQC: the multi-purpose toolkit for GPS/GLONASS data[J]. GPS solutions, 1999, 3(1): 42-49. DOI: 10.1007/PL00012778
    [15]
    BILICH A, LARSON K M. Mapping the GPS multipath environment using the signal-to-noise ratio (SNR)[J]. Radio science, 2007, 42(6): RS6003. DOI: 10.1029/2007RS003652
    [16]
    BECERRA G E V, BENNETT R, SPINLER J C. Assessment of pseudorange multipath at continuous GPS stations in Mexico[J]. Positioning, 2013, 4(3): 253-265. DOI: 10.4236/pos.2013.43025
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (291) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return