GNSS World of China

Volume 46 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
QUAN Xuezhen, ZHANG Jie, SONG Xiurong, YANG Bin. A optimized fusion zenith tropospheric delay model-FZTD[J]. GNSS World of China, 2021, 46(3): 61-65. doi: 10.12265/j.gnss.2020120701
Citation: QUAN Xuezhen, ZHANG Jie, SONG Xiurong, YANG Bin. A optimized fusion zenith tropospheric delay model-FZTD[J]. GNSS World of China, 2021, 46(3): 61-65. doi: 10.12265/j.gnss.2020120701

A optimized fusion zenith tropospheric delay model-FZTD

doi: 10.12265/j.gnss.2020120701
  • Received Date: 2020-12-07
    Available Online: 2021-07-05
  • Publish Date: 2021-06-30
  • Tropospheric delay is one of the main error sources that affect the accuracy of Global Navigation Satellite System (GNSS) navigation and positioning. One effective way to weaken the influence of tropospheric delay is the model correction method. This paper has proposed a simple and accurate fusion tropospheric delay model (FZTD) by combining the simplicity of the UNB3 model and the high-precision characteristics of the GPT2w model. The accuracy of the purposed model was verified by using the International GNSS Service (IGS) troposphere zenith delay (ZTD) data over 2011—2015. The results show that root mean square (RMS) and bias values of the FZTD model are 4.4 cm and −0.3 cm, respectively, which are smaller than the traditional models UNB3m (RMS: 5.1 cm, bias: 1.1 cm) and EGNOS (RMS: 5.1 cm, bias: 0.3 cm). Its global accuracy has increased by 14%, and the improvement is particularly obvious in the southern hemisphere, especially in the Antarctic region, the accuracy has increased by nearly 3 times. The FZTD model makes up for the shortcomings of the traditional models that there are large differences in accuracy between the northern and southern hemispheres. The total meteorological parameters of the new model are only 120, which are drastically reduced compared to the GPT2w model, which makes it possible to be hardwired in the GNSS receivers.

     

  • loading
  • [1]
    COLLINS J P, LANGLEY R B. A tropospheric delay model for the user of the wide area augmentation system[R/OL]. (1996-10-01)[2020-11-29]. http://gauss.gge.unb.ca/papers.pdf/waas.tropo.oct96.pdf
    [2]
    LEANDRO R, SANTOS M, LANGLE R B. UNB neutral atmosphere models, development and performance[C/OL]//Proceedings ION NTM 2006, Institute of Navigation, Monterey, California, 2006: 564-573. https://www.docin.com/p-905444279.html
    [3]
    KRUEGER E, SCHUELER T, ARBESSER-RASTBURG B. The standard tropospheric correction model for the european satellite navigation system Galileo[C/OL]// The XXVIIIth General Assembly of the International Union of Radio Science (URSI), New Delhi, India, 2005. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.532.9026&rep=rep1&type=pdf
    [4]
    SCHULER T. The TropGrid2 standard tropospheric correction model[J]. GPS solut, 2014, 18(1): 123-131. DOI: 10.1007/s10291-013-0316-x
    [5]
    BOHM J, HEINKELMANN R, SCHUH H. Short note: a global model of pressure and temperature for geodetic applications[J]. Journal of geodesy, 2007, 81(10): 679-683. DOI: 10.1007/s00190-007-0135-3
    [6]
    LAGLER K, SCHINDELEGGER M, BӦHM J, et al. GPT2: empirical slant delay model for radio space geodetic techniques[J]. Geophysical research letters, 2013, 40(6): 1069-1073. DOI: 10.1002/grl.50288
    [7]
    BOHM J, MOLLER G, SCHINDELEGGER M, et al. Development of an improved empirical model for slant delays in the troposphere (GPT2w)[J]. GPS solut. 2015(19): 433-441.DOI: 10.1007/s10291-014-0403-7
    [8]
    LANDSKRON D, BӦHM J. VMF3/GPT3: refined discrete and empirical troposphere mapping functions[J]. Journal of geodesy, 2017, 92(4): 349-360. DOI: 10.1007/s00190-017-1066-2
    [9]
    李薇, 袁运斌, 欧吉坤, 等. 全球对流层天顶延迟模型IGGtrop的建立与分析[J]. 科学通报, 2012, 57(15): 1317-1325.
    [10]
    LI W, YUAN Y B, OU J K, et al. New versions of the BDS/GNSS zenith tropospheric delay model IGGtrop[J]. Journal of geodesy, 2015, 89(1): 73-80. DOI: 10.1007/s00190-014-0761-5
    [11]
    姚宜斌, 何畅勇, 张豹, 等. 一种新的全球对流层天顶延迟模型GZTD[J]. 地球物理学报, 2013, 56(7): 2218-2227. DOI: 10.6038/cjg20130709
    [12]
    YAO Y B, HU Y F, YU C, et al. An improved global zenith tropospheric delay model GZTD2 considering diurnal variations[J]. Nonlinear processes in geophysics, 2016, 23(3): 127-136. DOI: 10.5194/npg-23-127-2016
    [13]
    SAASTAMOINEN J. Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites[M]. The use of Artificial Satellites for Geodesy. Geophys, 1972, 15: 274–251.DOI: 10.1029/GM015p0247
    [14]
    ASHNE J, NORDIUS H. Estimation of tropospheric delay for microwaves from surface weather data[J]. Radio science, 1987, 22(3): 379-386. DOI: 10.1029/RS022i003p00379
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views (365) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return