留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

集成GNSS和加速度计的实时变形监测系统研制

王培源 涂锐 韩军强 左航 陶琳琳 方婧

王培源, 涂锐, 韩军强, 左航, 陶琳琳, 方婧. 集成GNSS和加速度计的实时变形监测系统研制[J]. 全球定位系统, 2023, 48(3): 120-126. doi: 10.12265/j.gnss.2023012
引用本文: 王培源, 涂锐, 韩军强, 左航, 陶琳琳, 方婧. 集成GNSS和加速度计的实时变形监测系统研制[J]. 全球定位系统, 2023, 48(3): 120-126. doi: 10.12265/j.gnss.2023012
WANG Peiyuan, TU Rui, HAN Junqiang, ZUO Hang, TAO Linlin, FANG Jing. Development of a real-time deformation monitoring system with integrated GNSS and accelerometer[J]. GNSS World of China, 2023, 48(3): 120-126. doi: 10.12265/j.gnss.2023012
Citation: WANG Peiyuan, TU Rui, HAN Junqiang, ZUO Hang, TAO Linlin, FANG Jing. Development of a real-time deformation monitoring system with integrated GNSS and accelerometer[J]. GNSS World of China, 2023, 48(3): 120-126. doi: 10.12265/j.gnss.2023012

集成GNSS和加速度计的实时变形监测系统研制

doi: 10.12265/j.gnss.2023012
基金项目: 国家自然科学基金(42274019)
详细信息
    作者简介:

    王培源:(1997—),女,硕士,研究方向为GNSS/加速度计融合定位

    涂锐:(1985—),男,博士,研究员,研究方向为GNSS精密定位,测速,时间传递,灾害监测等

    韩军强:(1989—),男,博士,研究方向为GNSS电离层建模理论研究及高精度定位应用

    通讯作者:

    涂 锐E-mail: turui-2004@126.com

  • 中图分类号: P228.4

Development of a real-time deformation monitoring system with integrated GNSS and accelerometer

  • 摘要: 本文设计了一种基于STM32单片机的全球卫星导航系统(GNSS)和加速度计的数据采集设备,其可以实现实时变形监测应用. 以STM32F103ZET6为主控芯片,利用GNSS板卡和加速度计采集数据,通过4G模块将数据传输到服务器,从服务器读取数据并用Kalman滤波算法对GNSS数据和加速度数据进行融合处理,从而达到实时变形监测的目的,并通过静态实验进行了验证. 实验结果表明:加速度计的基线漂移可以被自动校正,融合后XYZ三个方向位移标准差(STD)均优于1.114 cm,速度STD均优于0.072 cm/s,校正基线漂移后加速度STD均优于0.485 cm/s2.

     

  • 图  1  数据采集设备结构框图

    图  2  数据采集设备程序设计流程图

    图  3  RTCM3格式数据解码流程图

    图  4  GNSS与加速度计松组合数据处理过程

    图  5  实验装置

    图  6  不同方向原始速度及基线漂移加速度结果

    图  7  GNSS求解的三个方向的位移和速度

    图  8  GNSS与加速度数据融合后求解的三个方向的位移和速度

    表  1  RTCM3格式数据帧结构

    名称长度内容
    帧头8 bit11010011
    保留字6 bit默认为000000
    消息长度10 bit以byte为单位的消息长度
    可变长度消息内容0~1023 byte具体消息内容
    CRC校验码24 bit由前面数据生成的
    唯一校验码
    下载: 导出CSV

    表  2  4G 模块连接服务器需要的AT指令及其功能

    AT指令说明
    +++离开透传模式进入AT指令配置
    AT+WORKMODE=0设置仅数据透传模式
    AT+DTUMODE=1,1设置为TCP透传
    AT+DSCADDR=1,“TCP”,“IP”,端口号连接服务器
    AT+UARTCFG=115200,1,0,0设置串口参数
    AT&W保存当前配置
    AT+CFUN=1,1模块重启
    注:指令“AT+DSCADDR=1,‘TCP’,‘IP’,端口号”中的IP和端口号为实际所连服务器的IP和端口号.
    下载: 导出CSV

    表  3  静止状态下原始加速度及校正基线漂移之后加速度的平均值和STD

    统计量X方向Y方向Z方向
    原始加速度/(cm·s−2)平均值12.812 014.706 4976.076 5
    STD0.477 70.338 10.484 4
    去除基线漂移后的
    加速度/(cm·s−2)
    平均值−0.000 1−0.000 10.000 1
    STD0.480 70.337 60.484 3
    下载: 导出CSV

    表  4  数据融合前后速度的平均值和STD

    统计量X方向Y方向Z方向
    融合前的速度/(cm·s−1)平均值0.378 6−0.071 90.334 4
    STD1.368 30.793 31.553 4
    融合后的速度/(cm·s−1)平均值0.000 30.002 20.000 1
    STD0.070 40.051 50.071 1
    下载: 导出CSV
  • [1] WEBER E, CONVERTITO V, IANNACCONE G, et al. An advanced seismic network in the southern apennines (Italy) for seismicity investigations and experimentation with earthquake early warning[J]. Seismological research letters, 2007, 78(6): 622-634. DOI: 10.1785/gssrl.78.6.622
    [2] ZOLLO A, LANNACCONE G, LANCIERI M, et al. Earthquake early warning system in southern Italy: methodologies and performance evaluation[J]. Geophysical research letters, 2009, 36(5): L00B07. DOI: 10.1029/2008gl036689
    [3] CROWELL B W, BOCK Y, SQUIBB M B. Demonstration of earthquake early warning using total displacement waveforms from real-time GPS networks[J]. Seismological research letters, 2009, 80(5): 772-782. DOI: 10.1785/gssrl.80.5.772
    [4] GENRICH J F, BOCK Y. Instantaneous geodetic positioning with 10-50 Hz GPS measurements: noise characteristics and implications for monitoring networks[J]. Journal of geophysical research, 2006, 111(B3): B03403. DOI: 10.1029/2005jb003617
    [5] LARSON K M, BILICH A, AXELRAD P. Improving the precision of high-rate GPS[J]. Journal of geophysical research, 2007, 112(B5): B05422. DOI: 10.1029/2006jb004367
    [6] IWAN W D, MOSER M A, PENG C Y. Some observations on strong-motion earthquake measurement using a digital accelerograph[J]. Bulletin of the seismological society of America, 1985, 75(5): 1225-1246. DOI: 10.1007/bf01449758
    [7] BOORE D M. Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, earthquake[J]. Bulletin of the seismological society of America, 2001, 91(5): 1199-1211. DOI: 10.1785/0120000703
    [8] WU Y M, WU C F. Approximate recovery of coseismic deformation from Taiwan strong-motion records[J]. Journal of seismology, 2007, 11(2): 159-170. DOI: 10.1007/s10950-006-9043-x
    [9] WANG R, SCHURR B, MILKEREIT C, et al. An improved automatic scheme for empirical baseline correction of digital strong-motion records[J]. Bulletin of the seismological society of America, 2011, 101(5): 2029-2044. DOI: 10.1785/0120110039
    [10] EMORE G L, HAASE J S, CHOI K, et al. Recovering seismic displacements through combined use of 1-Hz GPS and strong-motion accelerometers[J]. Bulletin of the seismological society of America, 2007, 97(2): 357-378. DOI: 10.1785/0120060153
    [11] SMYTH A, WU M. Multi-rate Kalman filtering for the data fusion of displacement and acceleration response measurements in dynamic system monitoring[J]. Mechanical systems and signal processing, 2007, 21(2): 706-723. DOI: 10.1016/j.ymssp.2006.03.005
    [12] BOCK Y, MELGAR D, CROWELL B W. Real-time strong-motion broadband displacements from collocated GPS and accelerometers[J]. Bulletin of the seismological aociety of America, 2011, 101(6): 2904-2925. DOI: 10.1785/0120110007
    [13] TU R, LIU J H, LU C X, et al. Cooperating the BDS, GPS, GLONASS and strong-motion observations for real-time deformation monitoring[J]. Geophysical journal international, 2017, 209(3): 1408-1417. DOI: 10.1093/gji/ggx099
    [14] SHU Y M, FANG R X, GENG J H, et al. Broadband velocities and displacements from integrated GPS and accelerometer data for high-rate seismogeodesy[J]. Geophysical research letters, 2018, 45(17): 8939-8948. DOI: 10.1029/2018gl079425
    [15] GENG J H, BOCK Y, MELGAR D, et al. A new seismogeodetic approach applied to GPS and accelerometer observations of the 2012 brawley seismic swarm: implications for earthquake early warning[J]. Geochemistry, geophysics, geosystems, 2013, 14(7): 2124-2142. DOI: 10.1002/ggge.20139
    [16] GENG J H, MELGAR D, BOCK Y, et al. Recovering coseismic point ground tilts from collocated high-rate GPS and accelerometers[J]. Geophysical research letters, 2013, 40(19): 5095-5100. DOI: 10.1002/grl.51001
    [17] TU R, GE M R, WANG R J, et al. A new algorithm for tight integration of real-time GPS and strong-motion records, demonstrated on simulated, experimental, and real seismic data[J]. Journal of seismology, 2014, 18(1): 151-161. DOI: 10.1007/s10950-013-9408-x
    [18] TU R, CHEN K J. Tightly integrated processing of high-rate GPS and accelerometer observations by real-time estimation of transient baseline shifts[J]. The journal of navigation, 2014, 67(5): 869-880. DOI: 10.1017/S0373463314000150
    [19] TU R, LIU J, ZHANG R, et al. Real-time kinematic positioning algorithm with GNSS and high-frequency accelerometer observations for broadband signals[J]. Measurement science and technology, 2019, 31(3): 035007. DOI: 10.1088/1361-6501/ab5d87
    [20] PASSMORE P R, JACKSON M, ZIMAKOV L G, et al. Integrated seismogeodetic systsem with high-resolution, real-time GNSS and accelerometer observation for earthquake early warning application[C]// American Geophysical Union, Fall Meeting, 2014.
    [21] 曾燃, 耿江辉, 辛绍铭, 等. SMAG2000: 一体化GNSS强震仪及其地震监测性能分析[J]. 武汉大学学报(信息科学版): 2023, 48(3): 443-452.
    [22] XIN S M, GENG J H, ZENG R, et al. In-situ real-time seismogeodesy by integrating multi-GNSS and accelerometers[J]. Measurement, 2021, 179(5). DOI: 10.1016/j.measurement.2021.109453
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  267
  • HTML全文浏览量:  175
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-07
  • 网络出版日期:  2023-06-14

目录

    /

    返回文章
    返回