留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GNSS载波相位精密时间传递数据处理技术综述

涂锐 张鹏飞 张睿 范丽红 韩军强 王思遥 卢晓春

涂锐, 张鹏飞, 张睿, 范丽红, 韩军强, 王思遥, 卢晓春. GNSS载波相位精密时间传递数据处理技术综述[J]. 全球定位系统, 2023, 48(2): 1-9. doi: 10.12265/j.gnss.2023003
引用本文: 涂锐, 张鹏飞, 张睿, 范丽红, 韩军强, 王思遥, 卢晓春. GNSS载波相位精密时间传递数据处理技术综述[J]. 全球定位系统, 2023, 48(2): 1-9. doi: 10.12265/j.gnss.2023003
TU Rui, ZHANG Pengfei, ZHANG Rui, FAN Lihong, HAN Junqiang, WANG Siyao, LU Xiaochun. Discussion on data processing technology about precise time transfer based on GNSS carrier phase observation[J]. GNSS World of China, 2023, 48(2): 1-9. doi: 10.12265/j.gnss.2023003
Citation: TU Rui, ZHANG Pengfei, ZHANG Rui, FAN Lihong, HAN Junqiang, WANG Siyao, LU Xiaochun. Discussion on data processing technology about precise time transfer based on GNSS carrier phase observation[J]. GNSS World of China, 2023, 48(2): 1-9. doi: 10.12265/j.gnss.2023003

GNSS载波相位精密时间传递数据处理技术综述

doi: 10.12265/j.gnss.2023003
基金项目: 国家自然科学基金(41974032,11903040,42274019)
详细信息
    作者简介:

    涂锐:(1985—),男,博士,研究员,研究方向为GNSS精密定位、测速、时间传递和灾害监测等

    张鹏飞:(1987—),男,博士,副研究员,研究方向为GNSS定位及时间传递的方法与技术

    张睿:(1987—),男,博士,副研究员,研究方向为GNSS卫星精密定轨

    通讯作者:

    张鹏飞 E-mail: zhangpengfei@ntsc.ac.cn

  • 中图分类号: P228.4;P228.43

Discussion on data processing technology about precise time transfer based on GNSS carrier phase observation

  • 摘要: 精密时间传递是时频领域最为基础的工作之一,在科技、经济、军事和社会生活中具有重要作用. 全球卫星导航系统(GNSS)因其众多优势成为精密时间传递的重要手段,尤其是近些年发展的基于高精度载波相位观测值的时间传递技术成为GNSS时频领域的研究热点. 本文对GNSS载波相位精密时间传递相关的研究进行了全面总结,对其数据处理涉及的观测模型、模糊度处理方法进行了归纳阐述,对精准性、一致性、稳健性、连续性、实时性、完好性等技术进行了探讨,并指出该领域未来应该重点解决非差与差分处理模型统一性、不同机理融合时间服务统一性和天空地海地下时间服务无缝性问题.

     

  • 图  1  GNSS非差载波相位观测值精密时间传递原理

  • [1] 漆贯荣. 时间科学基础[M]. 北京: 高等教育出版社, 2006.
    [2] 刘经南. GNSS连续运行参考站网的下一代发展方向—地基地球空间信息智能传感网络[J]. 武汉大学学报 (信息科学版), 2011, 36(3): 253-256.
    [3] ALLAN D W, THOMAS C. Technical directives for standardization of GPS time receiver software: to be implemented for improving the accuracy of GPS common-view time transfer[J]. Metrologia, 1994(31): 69-79. DOI: 10.1088/0026-1394/31/1/014
    [4] WEISS M A, PETIT G, JIANG Z. A comparison of GPS common-view time transfer to all-in-view [C]// Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, 2015.
    [5] PETIT G, JIANG Z. GPS all in view time transfer for TAI computation[J]. Metrologia, 2008, 45(1): 35-45. DOI: 10.1088/0026-1394/45/1/006
    [6] JIANG Z, LEWANDOWSKI W. Use of GLONASS for UTC time transfer[J]. Metrologia, 2012, 49: 57. DOI: 10.1088/0026-1394/49/1/009
    [7] RIZOS C. Multi-constellation GNSS/RNSS from the perspective of high accuracy users in Australia[J]. Spatial science, 2008, 53(2): 29-63. DOI: 10.1080/14498596.2008.9635149
    [8] 杨元喜. 北斗卫星导航系统的进展、贡献与挑战[J]. 测绘学报, 2010, 39: 1-6.
    [9] LARSON KM, LEVINE J. Carrier-Phase Time transfer[J]. IEEE transaction on ultrasonic, ferroelectrics, and frequency control, 1999, 46(4): 1001-1012. DOI: 10.1109/58.775667
    [10] RAY J, PETIT G. IGS/BIPM pilot project interim report[C]//presented to 14th Meeting of the Consultative Committee for Time and Frequency, at BIPM, Sèvres, France, 1999.
    [11] RAY J. IGS/BIPM pilot project to study time and frequency comparisons using GPS phase and code measurements[C]//15th Meeting of the Consultative Committee for Time and Frequency (CCTF) 20-21 June 2001.
    [12] 聂桂根. 高精度GPS测时与时间传递的误差分析与应用研究[D]. 武汉: 武汉大学, 2002.
    [13] COSTA R, ORGIAZZI D, PETTITI V, et al. Performance comparison and stability characterization of timing and geodetic GPS receivers at IEN[C]//Frequency and Time Forum, 2004: 279-286.
    [14] JIANG Z, DACH R, PETIT G, et al. Comparison and combination of TAI time links with continuous GPS carrier phase results[C]// Proceedings of the 20th European Frequency and Time Forum, 2006.
    [15] PETIT G, JIANG Z. Precise Point Positioning for TAI computation[C]//IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, 2007.
    [16] 张小红, 蔡诗响, 李星星, 等. 利用GPS精密单点定位进行时间传递精度分析[J]. 武汉大学学报(信息科学版), 2010, 35(3): 274-278.
    [17] YAO J, LEVINE J. A new algorithm to eliminate GPS carrier-phase time transfer boundary discontinuity[C]//ION Precise Time and Time Interval Meeting, 2013.
    [18] 于合理, 郝金明, 刘伟平, 等. 附加原子钟物理模型的PPP 时间传递算法[J]. 测绘学报, 2016, 45(11): 1285-1292. DOI: 10.11947/j.AGCS.2016.20160217
    [19] 孙清峰, 蔡昌盛, 董州楠, 等. 基于GNSS多星座PPP的时间传递精度分析[J]. 测绘, 2017, 40(5): 195-198. DOI: 10.3969/j.issn.1674-5019.2017.05.001
    [20] 吕大千, 曾芳玲, 欧阳晓凤, 等. 时频传递的改进整数相位钟方法[J]. 测绘学报, 2019, 48(7): 889-897.
    [21] TU R, ZHANG P F, ZHANG R, et al. Modeling and performance analysis of precise time transfer based on BDS triple-frequency un-combined observations[J]. Journal of geodesy, 2019, 93(12): 837-847. DOI: 10.1007/s00190-018-1206-3
    [22] TU R, ZHANG P F, ZHANG R, et al. Precise time transfer model suitable for short baseline link based on GPS single-differenced observation and ambiguity resolution technology[J]. Acta Geodaetica et Geophysica, 2021, 56: 345-355. DOI: 10.1007/s40328-021-00332-w
    [23] TU R, ZHANG P F, ZHANG R, et al. Real-time and dynamic time transfer method based on double-differenced real-time kinematic mode[J]. IET radar, sonar and navigation, 2021, 15(1): 143-153. DOI: 10.1049/RSN2.12027
    [24] 张鹏飞. GNSS载波相位时间传递关键技术与方法研究[D]. 北京: 中国科学院大学, 2019.
    [25] 葛玉龙. 多频多系统精密单点定位时间传递方法研究[D]. 北京: 中国科学院大学, 2020.
    [26] ORGIAZZI D, TAVELLA P, LAHAYE F. Experimental assessment of the time transfer capability of precise point positioning (PPP)[C]// Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, 2005.
    [27] DACH R, HUGENTOBLER U, FRIDEZ P, et al. User’s manual of Bernese GPS software: version 5.0[M]. Astronomical Institute, University of Bern, 2007.
    [28] DEFRAIGNE P, BRUYNINX C. On the link between GPS pseudorange noise and day-boundary discontinuities in geodetic time transfer solutions[J]. GPS solutions., 2007, 11(4): 239-249. DOI: 10.1007/s10291-007-0054-z
    [29] ESTEBAN H, PALACIO J, GALINDO F J, et al. Improved GPS-based time link calibration involving ROA and PTB[J]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2010, 57(3): 714-720. DOI: 10.1109/TUFFC.2010.1469
    [30] 袁媛, 仲崇霞, 张升康. GPS载波相位时间传递软件的实现[J]. 宇航计测技术, 2013, 33(5): 43-51. DOI: 10.3969/j.issn.1000-7202.2013.05.010
    [31] PETIT G, KANJ A, LOYER S, et al. 1×10−16 Frequency transfer by GPS PPP with integer ambiguity resolution[J]. Metrologia, 2015, 52(2): 301-309. DOI: 10.1088/0026-1394/52/2/301
    [32] ZHANG P F, TU R, ZHANG R, et al. Combining GPS, BeiDou, and Galileo satellite systems for time and frequency transfer based on carrier phase observations[J]. Remote sensing, 2018, 10(2): 324. DOI: 10.3390/rs10020324
    [33] 高玉平, 漆溢, 王正明. 多通道时间传递接收机NTSCGPS-1的研制与测试[J]. 全球定位系统, 2004(2): 16-19,23. DOI: 10.3969/j.issn.1008-9268.2004.02.004
    [34] 高玉平, 王平利, 冯瑞权, 等. 共视精密时间服务系统的应用[J]. 时间频率学报, 2016, 39(3): 170-177. DOI: 10.13875/j.issn.1674-0637.2016-03-0170-08
    [35] ROVERA G D, TORRE J-M, SHERWOOD R, et al. Link calibration against receiver calibration: an assessment of GPS time transfer uncertainties[J]. Metrologia, 2014, 51(5): 476. DOI: 10.1088/0026-1394/51/5/476
    [36] 刘娅, 陈瑞琼, 赵志雄, 等. UTC(NTSC)远程高精度复现方法研究及工程实现[J]. 时间频率学报, 2016, 39(3): 178-192. DOI: 10.13875/j.issn.1674-0637.2016-03-0178-15
    [37] GUO W F, SONG W W, NIU X J, et al. Foundation and performance evaluation of real-time GNSS high-precision one-way timing system[J]. GPS solutions, 2019, 23(1): 23. DOI: 10.1007/s10291-018-0811-1
    [38] 梁坤, 方维, 顾杨义, 等. 远程时间传递与溯源方法、装置及体系[J]. 计量科学与技术, 2021, 65(4): 3-13.
    [39] XIA X, QIN H L, LU H. High-precision time synchronization of kinematic navigation system using GNSS RTK differential carrier phase time transfer[J]. Measurement, 2021(176): 102241-109132. DOI: 10.1016/J.MEASUREMENT.2021.109132
    [40] 施闯, 辜声峰, 楼益栋, 等. 广域实时精密定位与时间服务系统[J]. 测绘学报, 2022, 51(7): 1206-1214. DOI: 10.11947/j.AGCS.2022.20220153
    [41] DEFRAIGNE P, BRUYNINX C, GUYENNON N. PPP and phase-only GPS frequency transfer[C]//IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, 2007.
    [42] TU R, ZHANG P F, ZHANG R, et al. Modeling and assessment of precise time transfer by using BDS triple-frequency signals[J]. Sensors, 2018, 18(4): 1017. DOI: 10.3390/s18041017
    [43] WANG J L, SATIRAPOD C, RIZOS C. Stochastic assessment of GPS carrier phase measurements for precise static relative positioning[J]. Journal of geodesy, 2002, 76(2): 95-104. DOI: 10.1007/s00190-001-0225-6
    [44] GUO F, ZHANG X H, WANG J L. Timing group delay and differential code bias corrections for BeiDou positioning[J]. Journal of geodesy, 2015(89): 427-445. DOI: 10.1007/s00190-015-0788-2
    [45] SATIRAPOD C, LUANSANG M. Comparing stochastic models used in GPS precise point positioning technique[J]. Survey review, 2008(40): 188-194. DOI: 10.1179/003962608X290988
    [46] GE M, GENDT G, ROTHACHER M, et al. Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations[J]. Journal of geodesy, 2008, 82(7): 389-399. DOI: 10.1007/s00190-007-0208-3
    [47] 安向东, 陈华, 姜卫平, 等. 长基线GLONASS模糊度固定方法及实验分析[J]. 武汉大学学报(信息科学版), 2019, 5(9): 690-698. DOI: 10.13203/j.whugis20170091
    [48] 李星星. GNSS精密单点定位及非差模糊度快速确定方法研究[D]. 武汉: 武汉大学, 2013.
    [49] GENG J, MENG X L, DODSON A, et al. Integer ambiguity resolution in precise point positioning: method comparison[J]. Journal of geodesy, 2010, 84(9): 569-581. DOI: 10.1007/s00190-010-0399-x
    [50] 张永军, 徐绍铨, 张小红. GPS/GLONASS组合定位中模糊度的处理[J]. 武汉大学学报(信息科学版), 2001, 26(1): 58-63.
    [51] ZHANG P F, TU R, GAO Y P, et al. Improving Galileo’s carrier-phase time transfer based on prior constraint information[J]. Journal of navigation, 2019, 72(1): 1-19. DOI: 10.1017/S0373463318000486
    [52] ZHANG P F, TU R, LU X C, et al. Performance of GPS precise time and frequency transfer with integer ambiguity resolution[J]. Measurement science technology, 2021, 33(4): 045005. DOI: 10.1088/1361-6501/ac3a30
    [53] ZHANG P F, TU R, GAO Y P, et al. Atomic clock modeling augmentating time and frequency transfer using carrier phase observation[J]. IET radar, sonar and navigation, 2020, 14(3): 1202-1210. DOI: 10.1049/iet-rsn.2020.0103
    [54] ZHANG P F, TU R, TAO L L, et al. Preliminary analysis of intersystem biases in BDS-2/BDS-3 precise time and frequency transfer[J]. Remote sensing, 2022, 14(18): 4594. DOI: 10.3390/rs14184594
    [55] TU R, ZHANG P F, ZHANG R, et al. GNSS time offset monitoring based on single difference among systems[J]. IET radar, sonar and navigation, 2020, 14(1): 299-302. DOI: 10.1049/iet-rsn.2019.0387
    [56] TU R, HONG J, ZHANG P F, et al. Multiple GNSS inter-system biases in precise time transfer[J]. Measurement science and technology, 2019, 30(11): 115003. DOI: 10.1088/1361-6501/ab32b3
    [57] ZHANG P F, TU R, HAN J Q, et al. Characterization of biases between BDS-3 and BDS-2, GPS, Galileo, and GLONASS observations and their effect on precise time and frequency transfer[J]. Measurement science and technology, 2021, 32(3): 035006. DOI: 10.1088/1361-6501/ABC963
    [58] ZHANG P F, TU R, GAO Y P, et al. Evaluation of carrier-phase precise time and frequency transfer using different analysis centre products for GNSSs[J]. Measurement science and technology, 2019, 30(6): 065003. DOI: 10.1088/1361-6501/ab0f7f
    [59] ZHANG P F, TU R, LU X C, et al. Performance of multi-GNSS real-time UTC(NTSC) time and frequency transfer service using carrier phase observations[J]. Remote sensing, 2021, 13(20): 4184. DOI: 10.3390/RS13204184
    [60] ZHANG P F, TU R, GAO Y P, et al. Performance of Galileo precise time and frequency transfer models using quad-frequency carrier phase observations[J]. GPS solutions, 2020, 24(2): 40. DOI: 10.1007/s10291-020-0955-7
    [61] ZHANG P F, TU R, ZHANG R, et al. A model to obtain timing solution with un-differenced observations suitable for single-station/multi-station, a case study of BDS data[J]. Acta geodaetica et geophysica, 2020, 55(10): 515-529. DOI: 10.1007/s40328-020-00297-2
    [62] ZHANG P F, TU R, ZHANG R, et al. Time and frequency transfer using BDS-2 and BDS-3 carrier phase observations[J]. IET radar, sonar and navigation, 2019, 13(8): 1249-1255. DOI: 10.1049/iet-rsn.2019.0011
    [63] TU R, ZHANG P F, ZHANG R, et al. An approach for GPS precise time transfer using an augmentation information and zero-differenced PPP model[J]. IET radar, sonar and navigation, 2018, 12(8): 801-806. DOI: 10.1049/iet-rsn.2017.0607
    [64] YAO J, SKAKUN I, JIANG Z H, et al. A detailed comparison of two continuous GPS carrier-phase time transfer techniques[J]. Metrologia, 2015, 52(5): 666-676. DOI: 10.1088/0026-1394/52/5/666
    [65] RAY J, SENIOR K. IGS/BIPM pilot project: GPS carrier phase for time/frequency transfer and time scale formation[J]. Metrologia, 2003, 40(3): S270-S288. DOI: 10.1088/0026-1394/40/3/307
    [66] RAY J, SENIOR K. Geodetic techniques for time and frequency comparisons using GPS phase and code measurements[J]. Metrologia, 2005, 42(4): 215. DOI: 10.1088/0026-1394/42/4/005
    [67] ZHANG P F, TU R, GAO Y P, et al. Day-boundary discontinuity in GPS carrier-phase time transfer using geodetic data solution strategy[J]. Journal of surveying engineering, 2018, 145(1): 04018013. DOI: 10.1061/(ASCE)SU.1943-5428.0000268
    [68] ZHANG P F, TU R, GAO Y P, et al. Improving the performance of Multi-GNSS time and frequency transfer using robust helmert variance component estimation[J]. Sensors, 2018, 18(9): 2878. DOI: 10.3390/s18092878
    [69] ZHANG P F, TU R, GAO Y P, et al. The study of time link calibration based on GPS carrier phase observation[J]. IET radar, sonar & navigation, 2018, 12(11): 1330-1335. DOI: 10.1049/iet-rsn.2018.5096
    [70] ZHANG P F, TU R, GAO Y P, et al. Impact of BeiDou satellite-induced code bias variations on precise time and frequency transfer[J]. Measurement science and technology, 2019, 30(3): 035007. DOI: 10.1088/1361-6501/aafec1
    [71] LI X X, WANG Q Y, WU J Q, et al. Multi-GNSS products and services at iGMAS wuhan innovation application center: strategy and evaluation[J]. Satellite navigation, 2022, 3(1): 20. DOI: 10.1186/s43020-022-00081-3
    [72] 赵齐乐, 许小龙, 马宏阳, 等. GNSS实时精密轨道快速计算方法及服务[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2157-2166. DOI: 10.13203/j.whugis20180374
    [73] KAZMIERSKI K, SOŚNICA K, HADAS T. Quality assessment of multi-GNSS orbits and clocks for real-time precise point positioning[J]. GPS solution, 2018, 22(11): 1-12. DOI: 10.1007/s10291-017-0678-6
    [74] ZHANG P F, TU R, GAO Y P, et al. Comparison of multi-GNSS time and frequency transfer performance using overlap-frequency observations[J]. Remote sensing, 2021, 13(16): 3130. DOI: 10.3390/RS13163130
    [75] 贺成艳. GNSS空间信号质量评估方法研究及测距性能影响分析[D]. 北京: 中国科学院大学, 2013.
    [76] FABIAN R. Statistical Inference for Safe and Continuous Navigation in the Presence of GNSS Spoofing[D]. Stanford University, 2021.
    [77] PHELTS R E, WALTER T. Nominal GPS signal deformations 10 years of WAAS signal quality monitoring[C]//International Technical Meeting of The Institute of Navigation, 2022.
    [78] HENG L. Safe Satellite Navigation with Multiple Constellations Global Monitoring of GPS and GLONASS Signal-in-Space Anomalies[D]. Stanford University, 2012.
    [79] 范丽红. BDS卫星空间信号异常探测及性能评估方法研究[D]. 西安: 长安大学, 2018.
    [80] FAN L H, TU R, ZHANG R, et al. Real-time BDS signal-in-space anomaly detection method considering receiver anomalies[J]. IET radar, sonar & navigation, 2019, 13(12): 2220-2229. DOI: 10.1049/iet-rsn.2019.0166
    [81] FAN L H, TU R, ZHANG R, et al. An improved method for detecting BeiDou signal-in-space anomalies from precise ephemerides[J]. Acta geodaetica et geophysica, 2019, 54(4): 567-581. DOI: 10.1007/s40328-019-00268-2
    [82] FAN L H, TU R, ZHANG R, et al. Evaluation of signal-in-space continuity and availability for beidou satellite considering failures[J]. Journal of navigation, 2020, 73(2): 1-12. DOI: 10.1017/S0373463319000602
    [83] FAN L H, TU R, ZHANG R, et al. Detection and Analysis of Galileo Signal-in-Space Anomalies from 2017-2018[J]. IET radar, sonar & navigation, 2020, 14(11): 1690-1696. DOI: 10.1049/iet-rsn.2020.0191
    [84] KAZUMA G. Safety Critical Bounds for Precise Positioning for Aviation and Autonomy[D]. Stanford University, 2021.
    [85] BLANCH J, WALTER T. Fast protection levels for fault detection with an application to advanced RAIM[J]. IEEE transactions on aerospace and electronic systems, 2021, 57(1): 55-65. DOI: 10.1109/TAES.2020.3011997
    [86] 王爱兵. 广域差分GPS用户端算法研究[D]. 郑州: 解放军信息工程大学, 2007.
    [87] 张倩倩. 新型RAIM算法的研究及其应用[D]. 郑州: 解放军信息工程大学, 2015.
    [88] KATZ A, PULLEN S, SHERMAN L, et al. ARAIM for military users: ISM parameters, constellation-check procedure and performance estimates[C]// International Technical Meeting of The Institute of Navigation, 2021.
    [89] 孟骞. 北斗导航接收机信号捕获及完好性监测关键技术研究[D]. 南京: 南京航空航天大学, 2018.
    [90] 袁运斌, 侯鹏宇, 张宝成. GNSS非差非组合数据处理与PPP-RTK高精度定位[J]. 测绘学报, 2022, 51(7): 1225-1238. DOI: 10.11947/j.issn.1001-1595.2022.7.chxb202207014
    [91] 张宝成, 柯成, 查九平, 等. 非差非组合PPP-RTK: 模型算法, 终端样机与实测结果[J]. 测绘学报, 2022, 51(8): 1725-1735. DOI: 10.11947/j.issn.1001-1595.2022.8.chxb202208006
    [92] 胡永辉, 张道农, 李延, 等. 现代授时技术[C]//2013年中国电机工程学会年会论文集, 2013.
    [93] 梁益丰, 许江宁, 吴苗, 等. 高精度授时技术发展现状分析[J]. 现代导航, 2018, 9(5): 331-334. DOI: 10.3969/j.issn.1674-7976.2018.05.005
    [94] 华宇, 郭伟, 燕保荣, 等. 我国授时服务体系发展现状分析[J]. 时间频率学报, 2016, 39(3): 193-201. DOI: 10.13875/j.issn.1674-0637.2016-03-0193-09
    [95] 冀虎, 张达, 戴锐, 等. 一种适用于地下矿山分布式系统的高精度时间同步系统设计及实现[J]. 中国矿业, 2019, 28(S2): 219-222.
    [96] 幺永超, 何展翔. 基于水声授时的海洋电磁采集站时钟同步方法研究[C]//中国地球物理学会地球物理技术委员会第九届学术会议—全域地球物理探测与智能感知学术研讨会会议摘要集, 2021.
    [97] 原韬雄. 全力校准国家标准时间[N]. 人民日报, 2022-06-14(6).
  • 加载中
图(1)
计量
  • 文章访问数:  273
  • HTML全文浏览量:  67
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-11
  • 网络出版日期:  2023-05-04

目录

    /

    返回文章
    返回