留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

星载GNSS-R监测海面目标技术进展

胡媛 顾世森 刘卫 江志豪 袁鑫泰

胡媛, 顾世森, 刘卫, 江志豪, 袁鑫泰. 星载GNSS-R监测海面目标技术进展[J]. 全球定位系统, 2023, 48(1): 125-132. doi: 10.12265/j.gnss.2021030902
引用本文: 胡媛, 顾世森, 刘卫, 江志豪, 袁鑫泰. 星载GNSS-R监测海面目标技术进展[J]. 全球定位系统, 2023, 48(1): 125-132. doi: 10.12265/j.gnss.2021030902
HU Yuan, GU Shisen, LIU Wei, JIANG Zhihao, YUAN Xintai. Technical progress of satellite-borne GNSS-R monitoring sea surface targets[J]. GNSS World of China, 2023, 48(1): 125-132. doi: 10.12265/j.gnss.2021030902
Citation: HU Yuan, GU Shisen, LIU Wei, JIANG Zhihao, YUAN Xintai. Technical progress of satellite-borne GNSS-R monitoring sea surface targets[J]. GNSS World of China, 2023, 48(1): 125-132. doi: 10.12265/j.gnss.2021030902

星载GNSS-R监测海面目标技术进展

doi: 10.12265/j.gnss.2021030902
基金项目: 国家自然科学基金(52071199);上海市自然科学基金(18ZR1417100,19ZR1422800)
详细信息
    作者简介:

    胡媛:(1981-),女,博士,副教授,主要从事卫星导航技术、GNSS-R技术以及海洋监测等研究

    顾世森:(1995-),男,硕士,主要从事GNSS-R技术以及海洋目标监测等研究

    通讯作者:

    刘 卫E-mail: 1039117736@qq.com

  • 中图分类号: P237

Technical progress of satellite-borne GNSS-R monitoring sea surface targets

  • 摘要: 全球卫星导航系统(GNSS)因其直射信号经海面反射后,反射信号会携带海面物理信息,由此开辟了一种在遥感应用中有巨大潜力的全球卫星导航反射信号(GNSS-R)技术,国内外在星载GNSS-R监测海面领域取得进展. 本文总结了应用星载GNSS-R数据监测海面目标的进展,然后针对星载GNSS-R监测海面目标技术从最初实验、基于延迟多普勒图(DDM)观测值监测、基于反演散射系数监测、应用神经网络监测四个方面进行了总结和归纳.

     

  • 图  1  DDM示意图

    表  1  星载GNSS-R监测海面目标的应用

    目标方法是否监测到目标精度/%参考文献
    海冰观测值97.78[21]
    SVM98.56[55]
    NN98.41[51]
    CNN98.73[52]
    SIA-[35]
    TSVD-[38]
    溢油反卷积法-[33]
    SIA-[36]
    船舶反卷积法-[34]
    下载: 导出CSV
  • [1] MARTIN-NEIRA M. A passive reflectometry and interferometry system (PARIS): application to ocean altimetry[J]. ESA journal, 1993, 17(4): 331-355.
    [2] 胡媛, 陈行杨, 顾旺旺, 等. GNSS-R 海面测高现状及其常用方法研究进展[J]. 全球定位系统, 2020, 45(3): 96-103.
    [3] HALL C D, CORDEY R A. Multistatic scatterometry[C]// International Geoscience and Remote Sensing Symposium, ‘Remote Sensing: Moving Toward the 21st Centry’, IEEE, 1988. DOI: 10.1109/IGARSS.1988.570200
    [4] SOULAT F M, GERMAIN O P, LOPEZ-DEKKER M, et al. Sea state monitoring using coastal GNSS-R[J]. Geophysical research letters, 2004, 31(21): 133-147. DOI: 10.1029/2004GL020680
    [5] FABRA F, CARDELLACH E, RIUS A, et al. Phase altimetry with dual polarization GNSS-R over sea ice[J]. IEEE transactions on geoscience and remote sensing, 2012, 50(99): 2112-2121. DOI: 10.1109/TGRS.2011.2172797
    [6] MARTIN-NEIRA M, CAPARRINI M, FONT-ROSSELLO J, et al. The PARIS concept: an experimental demonstration of sea surface altimetry using GPS reflected signals[J]. IEEE transactions on geoscience and remote sensing, 2001, 39(1): 142-150. DOI: 10.1109/36.898676
    [7] RIVAS M B, MARTIN-NEIRA M. Coherent GPS reflections from the sea surface[J]. IEEE geoscience and remote sensing letters, 2006, 3(1): 28-31. DOI: 10.1109/LGRS.2005.855617
    [8] 吴军, 张波, 洪学宝, 等. 基于北斗卫星反射信号的海面溢油探测方法及试验[J]. 北京航空航天大学学报, 2017, 43(1): 193-199. DOI: 10.13700/j.bh.1001-5965.2016.0096
    [9] AUBER J-C, BIBAUT A, RIGAL J M. Characterization of multipath on land and sea at GPS frequencies[C]//The 7th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1994), 1994: 1155-1171.
    [10] KOMJATHY A, ARMATYS M, MASTERS D, et al. A review of airborne reflected GPS signal processing results for ocean, land and ice remote sensing applications[C]//AGU Spring Meeting Abstracts, 2001: A32C-03.
    [11] KATZBERG S J, WALKER R A, ROLES J H, et al. First GPS signals reflected from the interior of a tropical storm: preliminary results from Hurricane Michael[J]. Geophysical research letters, 2001, 28(10): 1981-1984. DOI: 10.1029/2000GL012823
    [12] RUFFINI G, SOULAT F, CAPARRINI M, et al. The eddy experiment: accurate GNSS‐R ocean altimetry from low altitude aircraft[J]. Geophysical research letters, 2004, 31(12). DOI: 10.1029/2004GL019994
    [13] YONG L, YANG D K, LI W Q, et al. Study on the new methods of ship object detection based on GNSS reflection[J]. Marine geodesy, 2013, 36(1): 22-30. DOI: 10.1080/01490419.2012.747456
    [14] RODRIGUEZ-ALVAREZ N, AKOS D M, ZAVOROTNY V U, et al. Airborne GNSS-R wind retrievals using delay–doppler maps[J]. IEEE transactions on geoscience and remote sensing, 2012, 51(1): 626-641.
    [15] MASHBURN J, AXELRAD P, LOWE S T, et al. An assessment of the precision and accuracy of altimetry retrievals for a monterey bay GNSS-R experiment[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2016, 9(10): 4660-4668. DOI: 10.1109/JSTARS.2016.2537698
    [16] KATZBERG S J, GARRISONJ L. Utilizing GPS to determine ionospheric delay over the ocean[R/OL]. [2021-03-25]. NASA Technical Memorandum, 1996. https://ntrs.nasa.gov/api/citations/19970005019/downloads/19970005019.pdf
    [17] LOWE S T, LABRECQUE J L, ZUFFADA C, et al. First spaceborne observation of an earth-reflected GPS signal[J]. Radio science, 2002, 37(1): 7-1-7-28. DOI: 10.1029/2000RS002539
    [18] GLEASON S, ADJRAD M, UNWIN M. Sensing ocean, ice and land reflected signals from space: results from the UK-DMC GPS reflectometry experiment[C]//The 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005), 2005: 1679-1685.
    [19] GLEASON S. Remote sensing of ocean, ice and land surfaces using bistatically scattered GNSS signals from low earth orbit[D]. University of Surrey, 2006.
    [20] GLEASON S. Towards sea ice remote sensing with space detected GPS signals: demonstration of technical feasibility and initial consistency check using low resolution sea ice information[J]. Remote sensing, 2010, 2(8): 2017-2039. DOI: 10.3390/rs2082017
    [21] YAN Q Y, HUANG W M. Spaceborne GNSS-R sea ice detection using delay-doppler maps: first results from the UK TechDemoSat-1 mission[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2016, 9(10): 4795-4801. DOI: 10.1109/JSTARS.2016.2582690
    [22] RUF C, LYONS A, UNWIN M, et al. CYGNSS: Enabling the future of hurricane prediction remote sensing satellites[J]. IEEE geoscience and remote sensing magazine, 2013, 1(2): 52-67. DOI: 10.1109/MGRS.2013.2260911
    [23] LAUGHLAND J, GROGAN P T. Analyzing the calibration and validation support architecture for CYGNSS as a design problem[C]//ASCEND, 2020: 4057. DOI: 10.2514/6.2020-4057
    [24] ALONSO-ARROYO A, ZAVOROTNY V U, CAMPS A. Sea ice detection using UK TDS-1 GNSS-R data[J]. IEEE transactions on geoscience and remote sensing, 2017, 55(9): 4989-5001. DOI: 10.1109/TGRS.2017.2699122
    [25] SCHIAVULLI D, FRAPPART F, RAMILLIEN G, et al. Observing sea/ice transition using radar images generated from TechDemoSat-1 delay Doppler maps[J]. IEEE geoscience and remote sensing letters, 2017, 14(5): 734-738. DOI: 10.1109/LGRS.2017.2676823
    [26] HU C J, BENSON C, RIZOS C, et al. Single-pass sub-meter space-based GNSS-R ice altimetry: results from TDS-1[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2017, 10(8): 3782-3788. DOI: 10.1109/JSTARS.2017.2690917
    [27] LI W Q, CARDELLACH E, FABRA F, et al. First spaceborne phase altimetry over sea ice using TechDemoSat-1 GNSS-R signals[J]. Geophysical research letters, 2017, 44(16): 8369-8376. DOI: 10.1002/2017GL074513
    [28] YAN Q Y, HUANG W M. Sea ice detection from GNSS-R delay-Doppler map[C]//The 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 2016: 1-2. DOI: 10.1109/ANTEM.2016.7550123
    [29] MARCHÁN-HERNÁNDEZ J F, RODRÍGUEZ-ÁLVAREZ N, CAMPS A, et al. Correction of the sea state impact in the L-band brightness temperature by means of delay-Doppler maps of global navigation satellite signals reflected over the sea surface[J]. IEEE transactions on geoscience and remote sensing, 2008, 46(10): 2914-2923. DOI: 10.1109/TGRS.2008.922144
    [30] CLARIZIA M P, RUF C S, JALES P, et al. Spaceborne GNSS-R minimum variance wind speed estimator[J]. IEEE transactions on geoscience and remote sensing, 2014, 52(11): 6829-6843. DOI: 10.1109/TGRS.2014.2303831
    [31] CARTWRIGHT J, BANKS C J, SROKOSZ M. Sea ice detection using GNSS-R data from TechDemoSat-1[J]. Journal of geophysical research:oceans, 2019, 124(8): 5801-5810. DOI: 10.1029/2019JC015327
    [32] ZHANG G D, GUO J, YANG D K, et al. Sea ice edge detection using spaceborne GNSS-R signal[J]. Geomatics and information science of Wuhan University, 2019, 44(5): 668-674. DOI: 10.13203/j.whugis20170050
    [33] VALENCIA E, CAMPS A, MARCHAN-HERNANDEZ J F, et al. Ocean surface's scattering coefficient retrieval by delay–Doppler map inversion[J]. IEEE geoence and remote sensing letters, 2011, 8(4): 750-754. DOI: 10.1109/LGRS.2011.2107500
    [34] SIMONE A D, IODICE A, RICCIO D, et al. GNSS-R: a useful tool for sea target detection in near real-time[C]// The 3rd International Forum on Research and Technologies for Society and Industry - Innovation to Shape the Future for Society and Industry (RTSI), 2017. DOI: 10.1109/RTSI.2017.8065958
    [35] YAN Q Y, HUANG W M. Sea ice detection based on unambiguous retrieval of scattering coefficient from GNSS-R delay-Doppler maps[C]//OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), 2018: 1-5. DOI: 10.1109/OCEANSKOBE.2018.8559148
    [36] 陈闪闪, 张云, 洪中华, 等. GNSS反射信号海面溢油回波DDM仿真研究[J]. 全球定位系统, 2017, 42(3): 15-19. DOI: 10.13442/j.gnss.1008-9268.2017.03.004
    [37] 刘池莉, 严颂华, 陈泽强, 等. 基于星载GNSS-R延迟-多普勒图的海面目标探测[J]. 科学技术与工程, 2018, 18(17): 250-256. DOI: 10.3969/j.issn.1671-1815.2018.17.041
    [38] SCHIAVULLI D, NUNZIATA F, MIGLIACCIO M, et al. Reconstruction of the radar image from actual DDMs collected by TechDemoSat-1 GNSS-R mission[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2016, 9(10): 4700-4708. DOI: 10.1109/JSTARS.2016.2543301
    [39] ZAVOROTNY V U, VORONOVICH A G. Scattering of GPS signals from the ocean with wind remote sensing application[J]. IEEE transactions on geoscience and remote sensing, 2000, 38(2): 951-964. DOI: 10.1109/36.841977
    [40] RIUS A, CARDELLACH E, FABRA F, et al. Feasibility of GNSS-R ice sheet altimetry in Greenland using TDS-1[J]. Remote sensing, 2017, 9(7): 742. DOI: 10.3390/rs9070742
    [41] MARCHAN-HERNANDEZ J F, CAMPS A, RODRIGUEZ-ALVAREZ N, et al. An efficient algorithm to the simulation of delay–Doppler maps of reflected global navigation satellite system signals[J]. IEEE transactions on geoscience and remote sensing, 2009, 47(8): 2733-2740. DOI: 10.1109/TGRS.2009.2014465
    [42] LI C, HUANG W M. Sea surface oil slick detection from GNSS-R delay-Doppler maps using the spatial integration approach[C]//IEEE Radar Conference (RadarCon13), 2013. DOI: 10.1109/RADAR.2013.6585990
    [43] LI C, HUANG W M, GLEASON S. Dual antenna space-based GNSS-R ocean surface mapping: oil slick and tropical cyclone sensing[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2015, 8(1): 425-435. DOI: 10.1109/JSTARS.2014.2341581
    [44] SCHIAVULLI D, NUNZIATA F, PUGLIANO G, et al. Reconstruction of the normalized radar cross section field from GNSS-R delay-Doppler map[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2014, 7(5): 1573-1583. DOI: 10.1109/JSTARS.2014.2301019
    [45] LENTI F, NUNZIATA F, MIGLIACCIO M, et al. Two-dimensional TSVD to enhance the spatial resolution of radiometer data[J]. IEEE transactions on geoscience and remote sensing, 2014, 52(5): 2450-2458. DOI: 10.1109/TGRS.2013.2261303
    [46] WANG L, SCOTT K A, XU L L, et al. Sea ice concentration estimation during melt from dual-pol SAR scenes using deep convolutional neural networks: a case study[J]. IEEE transactions on geoscience and remote sensing, 2016, 54(8): 4524-4533. DOI: 10.1109/TGRS.2016.2543660
    [47] SHEN X Y, ZHANG J, ZHANG X, et al. Sea ice classification using Cryosat-2 altimeter data by optimal classifier–feature assembly[J]. IEEE geoscience and remote sensing letters, 2017, 14(11): 1948-1952. DOI: 10.1109/LGRS.2017.2743339
    [48] BOBYLEV L P, ZABOLOTSKIKH E V, MITNIK L, et al. Neural-Network based algorithm for ice concentration retrievals from satellite passive microwave data[C]// Microwave Radiometry and Remote Sensing of the Environment, 2008: 1-4. DOI: 10.1109/MICRAD.2008.4579499
    [49] WERBOS P J. New tools for prediction and analysis in the behavioral sciences[D]. Cambridge: Harvard University, 1974.
    [50] MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the society for Industrial and applied mathematics, 1963, 11(2): 431-441. DOI: 10.1137/0111030
    [51] YAN Q, HUANG W M, MOLONEY C. Neural networks based sea ice detection and concentration retrieval from GNSS-R delay-Doppler maps[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2017, 10(8): 3789-3798. DOI: 10.1109/JSTARS.2017.2689009
    [52] YAN Q Y, HUANG W M. Sea ice sensing from GNSS-R data using convolutional neural networks[J]. IEEE geoscience and remote sensing letters, 2018, 15(10): 1510-1514. DOI: 10.1109/LGRS.2018.2852143
    [53] CORTES C, VAPNIK V N. Support-vector networks[J]. Machine learning, 1995, 20(3): 273-297. DOI: 10.1023/A:1022627411411
    [54] PAL M, MATHER P. Support vector machines for classification in remote sensing[J]. International journal of remote sensing, 2005, 26(5): 1007-1011. DOI: 10.1080/01431160512331314083
    [55] YAN Q Y, HUANG W M. Detecting sea ice from TechDemoSat-1 data using support vector machines with feature selection[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2019, 12(5): 1409-1416. DOI 10.1109/JSTARS.2019.2907008
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  292
  • HTML全文浏览量:  61
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-09
  • 网络出版日期:  2023-02-07

目录

    /

    返回文章
    返回