DOI: 10.12265/j.gnss.2020102003

不同卫星高度角对 GPS/GLONASS/BDS/ Galileo 融合定位的影响

覃继前1,徐宁辉1,梁月吉2

(1. 南宁勘察测绘地理信息院, 南宁 530001;2. 桂林理工大学 测绘地理信息学院, 广西 桂林 541004)

摘 要:研究不同卫星高度角对 GPS/GLONASS/BDS/Galileo(G+R+B+E) 融合定位的影响,并 建立了相应的模型.采用 MGEX(Multi-GNSS Experiment) 提供的全球卫星导航系统 (GNSS) 数据, 经理论分析和算例表明:G+R+B+E 组合使得参与定位的有效卫星增多,在不同的卫星高度角下 均能保证较多的卫星数,保证较好的空间几何分布结构;组合系统达到一定的卫星数后,卫星高 度角对定位结果影响不大;当卫星高度角大于 30°时,相对于单一的 GPS 定位 G+R+B+E 在 3D 方 向的外符合定位精度有所改善.

关键词: 卫星高度角; 多系统; 卫星可见数; 位置精度衰减因子 (PDOP); 精度分析 中图分类号: P228.4 文献标志码: A 文章编号: 1008-9268(2021)02-0062-07

0 引 言

自第一个全球卫星导航系统 (GNSS) 运营以来, 经过了数十年的发展,呈现了 GPS、GLONASS、 北斗卫星导航系统 (BDS) 和 Galileo 融合定位的局 面. Cai 等 II 研究了 GPS/GLONASS 组合静态定位, 实验结果表明在卫星极少情况下的城市或峡谷区域, 组合单点定位精度水平方向在 20 m 左右; 王泽民 等^[2]研究了 GPS、Galileo 及其组合系统导航定位的 精度衰减因子 (DOP) 值, 根据模拟数据得出了双组 合系统在较高卫星角下, DOP 值仍然可以满足导航 定位的需要;苏忠³研究表明城市峡谷中建筑物的遮 挡使得单卫星导航系统可见星数量不足,导致无法连 续定位,采用 GPS/BDS 组合系统能够提高系统可用 性,有效地改善了伪距单点定位 (SPP) 的定位精度. 方欣颀等^[4]分析了 BDS-2/BDS-3 组合对 BDS-2、 BDS-3 单系统空间几何构型、SPP 精度的改善程度. 结果表明, BDS-3 的空间几何构型较 BDS-2 有明显 地提升,可见,多系统融合使得有效星数增加,增强了 卫星几何空间结构,有利于进一步提高定位精度.然 而,卫星高度角的确定在一定程度上也影响到定位精 度,对于多系统融合定位,在达到一定的有效星数后

进一步探讨卫星高度角选取是否在一定程度上对定 位精度有所改善.因此,本文通过建立四系统融合单 点定位模型,根据 MGEX (Multi-GNSS Experiment) 提供的实测数据,研究不同高度角对四系统组合定位 性能的影响.

1 多系统组合伪距单点定位模型

1.1 时空基准的统一

GPS时(GPST)采用原子时系统(AT),该系统由 美国GPS主控站的原子钟控制,秒长与原子时的秒 长相等,但是与国际原子时(ATI)的原点不同,两种 相差19 s. GLONASS时(GLONASST)采用协调世 界时(UTC)时间系统,该系统基于GLONASS同步 中心(CS)时间产生,与俄罗斯维持的UTC存在3h 的整数差和1ms内的系统差^[5].BDS时(BDST)和 GPST一样,采用AT,与GPST相差14 s^[6].Galileo时 (GST)与ATI保持同步,两者相差约33 ns,因时间原 点的原因,GPST与GST存在一个时间偏差GGTO (Galileo to GPS time offset)^[7].将GLONASST、BDST 和GST转换为GPST,如下式:

将 GLONASST 转化为 GPST:

收稿日期:2020-10-20 资助项目:广西空间信息与测绘重点实验室项目(16-380-25-22) 通信作者:徐宁辉 E-mail:1032271611@qq.com 式中:n为 UTC 与 AT 之间不断调整的参数,经国际 地球自转服务组织提供

将 BDST 转化为 GPST:

$$GPST = BDST + 14 s.$$
(2)

将 GST 转化为 GPST:

$$GGTO = A_{0G} + A_{1G} \cdot [TOW - t_{0G} + T \cdot ((WN - WN_{0G}) \mod 64)],$$
(3)

$$GPST = GST + GGTO.$$
(4)

式中: GGTO代表 GPS 与 Galileo 之间的系统时间偏差, 单位为 s; A_{0G} 、 A_{1G} 、 t_{0G} 和 WN_{0G} 分别代表时间偏差的常数项、变化率、参考时间和参考周数, 从 GNSS 融合导航文件获取; TOW代表周内时间, 单位为 s; T为常数, 等于 604 800; WN代表 Galileo 周数; mod 代表求余函数.

$$\begin{bmatrix} X_{\text{GPS}} \\ Y_{\text{GPS}} \\ Z_{\text{GPS}} \end{bmatrix} = \begin{bmatrix} -0.4 \\ -0.51 \\ -1.56 \end{bmatrix} + (1 + 22 \times 10^{-9}) \begin{bmatrix} 1 \\ 1.728 \times 10^{-6} \\ 0.017 \times 10^{-6} \end{bmatrix}$$

1.2 多系统融合定位模型

GPS、GLONASS、BDS 和 Galileo 的伪距单点定 位观测方程分别为:

$$\rho_i^{\rm G} = \sqrt{(X_i - x)^2 + (Y_i - y)^2 + (Z_i - z)^2} - cV_{\rm tR}^{\rm G} + c(V_{\rm ts})_i - (V_{\rm ion})_i - (V_{\rm trop})_i, \ i = 1, 2, \cdots, n,$$
(6)

$$\rho_{j}^{R} = \sqrt{(X_{j} - x)^{2} + (Y_{j} - y)^{2} + (Z_{j} - z)^{2}} - cV_{tR}^{R} + c(V_{ts})_{j} - (V_{ion})_{j} - (V_{trop})_{j}, \ j = 1, 2, \cdots, n,$$
(7)

$$\rho_h^{\rm B} = \sqrt{(X_h - x)^2 + (Y_h - y)^2 + (Z_h - z)^2 - cV_{\rm tR}^{\rm B} + c(V_{\rm ts})_h - (V_{\rm ion})_h - (V_{\rm trop})_h, h = 1, 2, \cdots, n,$$
(8)

$$\rho_{k}^{E} = \sqrt{(X_{k} - x)^{2} + (Y_{k} - y)^{2} + (Z_{k} - z)^{2}} - cV_{tR}^{E} + c(V_{ts})_{k} - (V_{ion})_{k} - (V_{trop})_{k}, \ k = 1, 2, \cdots, n.$$
(9)

式中: ρ_i^{G} 为的 GPS L1 频段的第i颗卫星伪距,单位为 m; ρ_i^{R} 为接收机接收到的 GLONASS L1 频段的第i颗 卫星伪距,单位为 m; ρ_i^{B} 为接收机接收到的 BDS B1 频段第i颗卫星伪距,单位为 m; ρ_i^{E} 为接收机接收 到的 Galileo E1 频段的第i颗卫星伪距,单位为 m;

GPS 采用的坐标基准是 1984 年美国大地世界坐 标系统 (WGS-84); GLONASS目前采用的是经俄罗 斯进行地面网与空间网联合攻关平差后建立的 PZ90坐标基准; BDS采用 2000国家大地坐标系 (CGCS2000)^[8]; Galileo 采用独立的大地坐标参考系 (GTRF)⁹.因为伪距单点定位的精度为米级, CGCS2000 坐标系和 Galileo 坐标系转换为 WGS-84 坐标系产生的误差可以忽略不计^[9-10], 而 PZ90 坐标 基准转换为 WGS-84坐标系产生的误差则要加入计 算^[11]. 本文采用布尔萨七参数模型进行 PZ90 坐标系 和 WGS-84 坐标系之间的转换。考虑到建立布尔萨 七参数模型需要首先确定七个转换参数,而俄罗斯 MCC(RussianMission Control Center)利用全球激光跟 踪测轨数据计算而来的坐标转换七参数是世界公认 精度最高的转换参数^[12].因此,本文将 PZ90 坐标系 和 WGS-84 坐标系之间的布尔萨七参数模型为

$$\begin{array}{ccc} -1.728 \times 10^{-6} & -0.017 \times 10^{-6} \\ {}^{-6} & 1 & 0.017 \times 10^{-6} \\ {}^{-6} & -0.017 \times 10^{-6} & 1 \end{array} \right] \cdot \begin{bmatrix} X_{\rm R} \\ Y_{\rm R} \\ Z_{\rm R} \end{bmatrix} .$$
 (5)

G、R、B和E分别表示GPS、GLONASS、BDS和Galileo卫星;下标*i、j、h和k*分别表示GPS、GLONASS、 BDS和Galileo卫星序号;(*x*,*y*,*z*)为观测坐标,单位 为m;(*X_i*,*Y_i*,*Z_i*)、(*X_j*,*Y_j*,*Z_j*)、(*X_h*,*Y_h*,*Z_h*)和(*X_k*,*Y_k*,*Z_k*)分 别表示GPS、GLONASS、BDS和Galileo卫星坐标, 单位为m; V_{tR}^{G} 、 V_{tR}^{R} 、 V_{tR}^{B} 和 V_{tR}^{E} 分别为GPS、GLONASS、 BDS和Galileo的接收机钟差,单位为m; V_{ts} 表示卫 星钟差,单位为m; V_{toon} 表示电离层延迟误差,单位为 m; V_{trop} 表示对流层延迟误差,单位为m;*c*代表真空 中的光速,单位为m.

在式(6)~(9)基础上,建立三、四系统融合伪距单 点定位观测方程为

$$\beta_{i} = \beta_{i}^{0} + h_{xi}\Delta x_{j} + h_{yi}\Delta y_{j} + h_{zi}\Delta z_{j} + k_{i}^{0}c\Delta t_{j}^{G} + k_{i}^{1}c\Delta t_{j}^{R} + k_{i}^{2}c\Delta t_{j}^{B} + k_{i}^{3}c\Delta t_{j}^{E} + V_{trop} + V_{ion} + \delta_{i}.$$
(10)

式中: $\beta_i^0 = \sqrt{(X_i - x_0)^2 + (Y_i - y_0)^2 + (Z_i - z_0)^2}$, 为第*i*颗 卫星到测站之间的几何距离; (X_i, Y_i, Z_i) 为第*i*颗卫星 的空间位置; (x_0, y_0, z_0) 为接收机的空间位置; β_i 为第*i* 颗卫星对应的码伪距; $\Delta x_j, \Delta y_j \pi \Delta z_j$ 为测站接收机近 似坐标与真实坐标之间的差值; $h_{xi}, h_{yi} \pi h_{zj}$ 分别为经 过线性化后的坐标偏差系数,其中 $h_{xi} = -\frac{X_i - x_0}{\beta_i^0}$, $h_{yi} = -\frac{Y_i - y_0}{\beta_i^0}$, $h_{zi} = -\frac{Z_i - z_0}{\beta_i^0}$; Δt_j^G 为 GPS 的卫星真实 钟差和近似钟差之间的差值; Δt_j^{R} 为 GLONASS 的卫 星真实钟差和近似钟差之间的差值; Δt_j^{B} 为 BDS 的卫 星真实钟差和近似钟差之间的差值; Δt_j^{E} 为 Galileo 的 卫星真实钟差和近似钟差之间的差值; k_i^{0} 、 k_i^{1} 、 k_i^{2} 和 k_i^{3} 分别为美国 GPS、俄罗斯 GLONASS、中国 BDS 和 伽利略 Galileo 卫星系统的选择系数, 四个系数的取 值只能是 1 或 0, 同一颗卫星, 需要将其中的 3 个系 数为 0, 剩余一个系数设置为 1; V_{trop} 为第i颗卫星对 应的对流层延迟; V_{ton} 为第i颗卫星对应的电离层延 迟; δ_i 为伪距观测值测量误差.

设某一接收机能够在某一时刻有效接收到第m 颗卫星,组成方程组后转化为矩阵可表示为

$$\Delta \boldsymbol{\beta} = \boldsymbol{A} \cdot \Delta \boldsymbol{x} + \boldsymbol{\delta}. \tag{11}$$

式中:

$$\Delta \boldsymbol{\beta} = \begin{bmatrix} \beta_{1} - \beta_{1}^{0} \\ \beta_{2} - \beta_{2}^{0} \\ \vdots \\ \beta_{m} - \beta_{m}^{0} \end{bmatrix};$$

$$\boldsymbol{A} = \begin{bmatrix} h_{x1} & h_{y1} & h_{z1} & k_{1}^{0} & k_{1}^{1} & k_{1}^{2} & k_{1}^{3} \\ h_{x2} & h_{y2} & h_{z2} & k_{2}^{0} & k_{2}^{1} & k_{2}^{1} & k_{2}^{3} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ h_{xm} & h_{xm} & h_{xm} & k_{m}^{0} & k_{m}^{1} & k_{m}^{1} & k_{m}^{3} \end{bmatrix};$$

$$\Delta \boldsymbol{x} = \begin{bmatrix} \Delta x_{j} \\ \Delta y_{j} \\ \Delta z_{j} \\ c \Delta t_{j}^{B} \\ c \Delta t_{j}^{B} \\ c \Delta t_{j}^{E} \end{bmatrix}; \boldsymbol{\delta} = \begin{bmatrix} \delta_{1} \\ \delta_{2} \\ \vdots \\ \delta_{m} \end{bmatrix}.$$

由伪距观测值的观测精度受观测误差的影响,不同的伪距观测值,其观测精度均不一样.在进行多系统融合定位时,需要考虑到同一个系统内、不同系统之间的权值.因此,可将四系统的组成方程变为

$$P\Delta\beta = PA \cdot \Delta x + P\delta. \tag{12}$$

通过最小二乘原理得

$$\Delta \boldsymbol{x} = \left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{P} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{P} \Delta \boldsymbol{\beta}.$$
(13)

本文主要通过卫星高度角来确定观测权值,对于 卫星高度角较大的伪距观测值,确定的权值较大,反 之则权值较小.文中采用文献 [12] 提出的方法,得出 如下权矩阵:

式中: σ_n^0 为对应第n颗卫星的伪距观测值权方差; σ_n^2 为第n颗卫星卫星高度角函数值; σ_n^2 计算方法^[12]如下:

$$\sigma_i^2 = \frac{a^2 + b^2}{\left(\sin\phi_i\right)^2},\tag{15}$$

$$P_i = \frac{\sigma_{0i}^2}{\sigma_i^2}.$$
 (16)

式中:下标*i*分别为G、R、B和E,分别代表GPS、GLONASS、BDS和Galileo卫星;a和b代表常数,一般取值0.4m和0.3m; ϕ_i 代表卫星高度角; σ_{0i}^2 为某系统的伪距观测值单位权方差; P_i 为某系统的伪距观测值权值.

2 实验分析

为探讨不同卫星的截止高度角对 G+R+B+E 系统伪距单点定位的影响,通过建立四系统定位模型,以 2015 年第 250 周 MGEX 跟踪站中的 PTGG 测 站和 GMSD 测站记录的数据为算例,分析了卫星高 度角为 10°、15°、20°、25°、30°、35°和 40°时 G+R+B+E 的定位性能,并和 GPS 作对比.经过多次实验结合经验 确定 G+R+B+E 四系统伪距观测值的单位权方差比值 为 4:1:3:4. 实验方案设计如表 1 所示,其中 Klobuchar

表1 实验方案设计

			_	_
项目	GPS	GLONASS	BDS	Galileo
码伪距	C1C	C1C	C1I	C1X
原采集间隔/s	30	30	30	30
原观测长度/h	24	24	24	24
截止卫星高度角/(°)	5	5	5	5
卫星钟差改正	是	是	是	是
电离层延迟改正	Klobuchar	Klobuchar	Klobuchar	Klobuchar
对流层延迟改正	Hopfield	Hopfield	Hopfield	Hopfield
接收机钟差改正	是	是	是	是
地球自转改正	是	是	是	是
相对论效应改正	是	是	是	是
时间基准	GPST	转为GPST	转为GPST	转为GPST
坐标基准	WGS-84	转为WGS-84	否	否
卫星坐标解算	广播星历	广播星历	广播星历	广播星历

模型参数采用 ftp://ftp.unibe.ch/提供的电离层参数.

2.1 PDOP 值分析

图 1 和图 2 分别给出了不同卫星高度角 G+R+B+E

和 GPS 对于 PTGG 测站和 GMSD 测站的位置精度 因子 (PDOP) 值变化情况.

由图 2 可知,随着卫星截止高度角的增大,GPS 在不同时段的 PDOP 值变化较大,均大于 1. 当卫星 高度角为 25°时,GPS 的 PDOP 值波动幅度更为明 显,由于部分观测时段的 PDOP 值过大,已选择性的 删除,比如 PTGG 测站的 13: 20—14:00 和 GMSD 测站的 09:10—09:40、20:40—20:55 等观测时段. 对比图 1 和图 2 发现,卫星高度角从 10°变化到 40°, G+R+B+E 组合系统的 PDOP 值变化相对于 GPS 较 为平缓;当卫星高度角为 10°时,PDOP 值多数在 0.35~0.60 波动;当卫星高度角截止到 40°时,PDOP 值多数在 0.70~1.40 变化.结合表 2、表 3 进一步看 出,卫星高度角为 10°时,G+R+B+E 组合的 PDOP 均值仅为 0.446(PTGG 测站)和 0.505(MGDS 测站), 而 GPS 达到 1.419 和 1.426,远大于 G+R+B+E 组合. 从 PDOP 均值变化幅度来看,当卫星高度角从 10°变 化到 40°时, GPS 的 PDOP 均值变化比 G+R+B+E 组 合大;当卫星高度角为 40°时, G+R+B+E 组合的 PDOP 均值仅为 0.921(PTGG 测站)和 1.121(MGDS 测站),卫星高度角相对于 10°时增加了四倍,而 PDOP 均值只增了一倍多.综上可见,随着卫星高度 角的增加, GPS 的卫星数目减少, PDOP 值也相应升 高;多系统融合保证了较多的可见星, PDOP 值变化 较为稳定.

2.2 定位精度分析

PTGG 测站 G+R+B+E 在不同卫星截止高度角下的定位结果如图 3 所示, GMSD 测站 G+R+B+E的定位结果如图 4 所示, PTGG 测站和 GMSD 测站GPS 的定位结果如图 5 和图 6 所示.

66

5

0

由图 5 和图 6 可知, 对于 GPS 不同卫星高度角下, PTGG 测站和 GMSD 测站的定位结果不稳定, 当卫星高度角大于 20°时, 北方向 (N)、东方向 (E) 和天顶方向 (U) 的内符合和外符合残差变化幅度较明显, 波动性强烈, 由于部分定位结果残差较大, 已被选择性剔除. 由图 3 和图 4 所示, 从 G+R+B+E 融合定位的结果发现, G+R+B+E 受卫星高度角选取影响比较小, 定位残差波动平缓. 只有当卫星高度角大于30°时, G+R+B+E 组合在 PTGG 测站的 21:00—24:00观测时段和 G+R+B+E 组合在 GMSD 测站的 03:00—06:00、20:00—22:00 观测时段, 定位误差大于在其他卫星高度角下的融合定位结果.

表 2、表 3 分别为 PTGG 测站和 GMSD 测站使 用不同的定位系统,在不同卫星高度角下的定位 精度.

表 2 不同卫星高度角下 PTGG 测站的定位精度统计

定位 系统	卫星 高度 角/(°)	PDOP 均值	$\Delta_{\rm N}$	$\Delta_{\rm E}$	$\Delta_{\rm U}$	W _{STD}	R _N	R _E	R _U	W _{RMS}
GPS	10	1.419	1.071	1.547	0.980	2.121	3.717	2.186	3.271	5.413
	15	1.566	1.158	1.730	0.991	2.306	3.766	2.313	3.257	5.490
	20	1.861	1.271	2.014	1.047	2.602	3.776	2.627	3.309	5.667
	25	2.587	2.193	3.485	1.765	4.481	4.043	4.014	3.607	6.743
G+R+ B+E 组合	10	0.446	1.019	1.276	1.084	1.960	3.683	1.437	2.959	4.939
	15	0.476	1.099	1.441	1.071	2.105	3.682	1.603	2.959	4.988
	20	0.556	1.226	1.708	1.098	2.372	3.468	1.793	3.026	4.939
	25	0.623	1.343	1.825	1.095	2.517	3.317	1.878	3.029	4.868
	30	0.707	1.451	2.031	1.124	2.738	3.195	2.092	2.975	4.841
	35	0.797	1.446	2.085	1.211	2.811	3.028	2.165	2.969	4.762
	40	0.921	1.497	2.234	1.351	3.009	2.829	2.344	2.979	4.730

结合表 2、表 3,进一步对比分析,GPS 和 G+R+ B+E 的内符合定位精度远高于外符合的定位精度, 随着卫星高度角的增加,内外符合精度均有所降低, 但 G+R+B+E 定位精度较为稳定,且在 N、E、U 以及 3D 方向的定位精度均优于 GPS.对比不同卫星高度 角 G+R+B+E 定位的结果,发现当卫星高度角大于 30°时,G+R+B+E 在 3D 方向的外符合定位精度有所 改善.综上,结合不同卫星高度角下的 PDOP 值变化 分析,得出:G+R+B+E 组合使得参与定位的有效卫 星增多,在不同的卫星高度角下均能保证较多的卫星 数,卫星几何分布结构较强,PDOP 值变化较为稳定, 伪距单点定位的精度远优于单系统;组合系统达到一 定的卫星数后,卫星高度角在一定程度上对系统的定 位结果影响不大.当单系统在恶劣环境、卫星数无法 满足定位的情况下,采用多系统融合确实可以提高定 位精度.

表 3 不同卫星高度角下 GMSD 测站的定位精度统计表

定位 系统	卫星 高度 角/(°)	PDOP 均值	Δ_{N}	$\Delta_{\rm E}$	Δ_{U}	W _{STD}	R _N	$R_{\rm E}$	R _U	W _{RMS}
GPS	10	1.426	1.274	1.666	1.569	2.620	2.928	4.243	2.317	5.652
	15	1.563	1.367	1.733	1.419	2.624	3.026	4.305	2.430	5.796
	20	1.857	1.536	1.950	1.260	2.784	3.110	4.381	2.488	5.921
	25	2.480	1.838	2.324	1.759	3.445	3.273	4.635	2.833	6.342
	10	0.505	1.052	1.535	1.067	2.145	2.417	2.595	1.296	3.776
G+R+ B+E 组合	15	0.534	1.100	1.664	1.099	2.277	2.609	2.778	1.483	4.090
	20	0.579	1.189	1.822	1.127	2.450	2.842	2.963	1.696	4.442
	25	0.686	1.689	2.179	1.413	3.098	2.690	2.876	1.705	4.292
	30	0.839	1.475	2.017	1.489	2.909	2.038	2.302	1.565	3.450
	35	0.982	1.671	2.243	1.659	3.252	2.073	2.339	1.681	3.549
	40	1.121	1.969	2.491	1.931	3.716	2.251	2.497	1.934	3.878

注: $\Delta_N, \Delta_E 和 \Delta_U \Delta_H \mathcal{R} X, E, U 方向的残差, W_{STD} 代表三个方向残差值$ $的平方和再开根号, <math>R_N, R_E \pi R_U \mathcal{R} X, E, U 方向的均方根误差, W_{RMS} \mathcal{R} X$ 表三个方向均方根误差的平方和再开根号

3 结论

本文研究了不同卫星高度角对四系统融合定位的影响,经理论分析和算例表明:卫星截止高度角增大,GPS的PDOP值也变大,均大于1.当卫星高度角为25°时,GPS的PDOP值波动幅度更为明显,不利于连续性定位解算;G+R+B+E组合系统的PDOP值变化相对于GPS较为平缓,当卫星高度角为10°时,PDOP值多数在0.35~0.60波动;当卫星高度角为40°时,PDOP值多数仅在0.7~1.4变化;当卫星高度角超过30°时,G+R+B+E在3D方向的外符合定位精度有所改善.G+R+B+E组合使得参与定位的有效卫星增多,在不同的卫星高度角下均能保证较多的卫星数,保证了较好的空间几何分布结构;组合系统达到一定的卫星数后,卫星高度角对定位结果影响不大.

参考文献

[1] CAI C S, GAO Y. A combined GPS/GLONASS navigation algorithm for use with limited satellite visibility[J]. Journal of

- [2] 王泽民, 孟泱, 伍岳, 等. GPS、Galileo及其组合系统导航定位的DOP值分析[J]. 武汉大学学报(信息科学版), 2006, 31(1): 9-11.
- [3] 苏忠.城市峡谷中GPS/BeiDou伪距单点定位性能分析[J]. 测绘通报, 2019(增刊): 30-35.
- [4] 方欣颀, 范磊. BDS-2/BDS-3伪距单点定位精度分析[J]. 全 球定位系统, 2020, 45(1): 19-25.
- [5] 李鹤峰, 党亚民, 秘金钟, 等. BDS与GPS、GLONASS多模 融合导航定位时空统一[J]. 大地测量与地球动力学, 2013, 33(4): 73-78.
- [6] 李彬,李征航,刘万科. COMPASS/GPS/GLONASS系统组合在中国区域的仿真分析[J]. 大地测量与地球动力学, 2013, 33(6): 94-97, 102.
- [7] 赵春梅,欧吉坤,袁运斌.基于单点定位模型的GALILEO及 GPS-GALILEO组合系统的定位精度和可靠性的仿真分 析[J].科学通报, 2005, 50(8): 811-819.
- [8] 邹波,李晓莉,陶庭叶,等. GPS/BDS组合系统伪距单点定

位模型精度分析[J]. 测绘科学, 2014, 39,(10): 30-32, 52.

- [9] 刘庆元,包海,王虎,等.GPS、GLONASS、GALILEO三大 系统间时间系统以及坐标系统的转换[J]. 测绘科学, 2008, 33(5): 13-15.
- [10] 高星伟, 过静珺, 程鹏飞, 等. 基于时空系统统一的北斗与 GPS融合定位[J]. 测绘学报, 2012, 41(5): 743-748, 755.
- [11] 党亚民, 成英燕, 薛树强. 大地坐标系及其应用[M]. 北京: 测绘出版社, 2010.
- GERDAN G P. A comparison of four methods of weighting double difference pseudorange measurements[J]. The australilan surveyor, 1995, 40(4): 60-66. DOI: 10.1080/00050334.
 1995.10558564

作者简介

覃继前 (1969—),男,工程师,研究方向为
GNSS 数据处理及分析.
徐宁辉 (1983—),男,工程师,研究方向为

GNSS 数据处理及分析.

The influence of different satellite altitude angles on GPS/GLONASS/ BDS/Galileo fusion positioning

QIN Jiqian¹, XU Ninghui¹, LIANG Yueji²

Nanning Surveying and Mapping Geographic Information Institute, Nanning 530001, China;
 College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China)

Abstract: This paper studied the offects of different satellites elevation on GPS/GLONASS/BDS/ Galileo (G+R+B+E) fusion positioning and corresponding model was established. Using global navigation satellite system (GNSS) data provided by MGEX(Multi-GNSS Experiment), the theoretical analysis and experiments showed that, combination of G+R+B+E increased the number of satellite used for positioning, and could ensure a relative large number of satellites and a good space geometric distribution structure. Satellites elevation had little effect on positioning result when the satellites of combined system reached a certain number. External error accuracy of G+R+B+E combination in 3D direction was improved when satellites elevation was larger than 30° .

Keywords: satellites elevation; multi-systems; the number of visible satellites; position dilution of precision (PDOP); precision analysis

3309990154